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1. Introduction

Empirical research in macroeconomics has increasingly come to rely on microfounded Dynamic

Stochastic General Equilibrium (DSGE) models. In most cases, these models describe economies

populated by agents who are fully rational: they have unlimited cognitive capacities, they can

solve intertemporal optimization problems, and form expectations about future variables according

to the rational expectations hypothesis. Recently, however, there have been growing efforts to

incorporate behavioral elements, such as limitations in cognition, understanding, or information,

by agents. The enriched models can successfully account for empirical aspects that would be

otherwise hard to rationalize within more traditional settings.

Focusing, for example, on the leading framework for monetary policy analysis, the New Keynesian

model, one problematic aspect is that, under the assumption of rational expectations, it implies

only minimal discounting of the future by households and firms. This feature is responsible for

puzzling predictions, such as those at the base of the “forward guidance puzzle”, uncovered by

Del Negro, Giannoni, and Patterson (2015). Expected shifts in interest rates in the model have

unrealistically large effects on current output, and effects that become even larger the further into

the future they are set to take place.

A line of research initiated by Gabaix (2014, 2016, 2020) introduces myopic behavior by economic

agents in the form of “cognitive discounting”. Cognitive discounting captures the idea that agents

cannot fully understand events that will take place in the distant future: a possible interpretation is

that agents mentally simulate the future paths of the economy, but when they deal with more distant

simulations, they progressively shrink them toward steady-state values. The impact of expectations

regarding deviations of variables from steady state, happening far into the future, is substantially

mitigated compared to the fully-rational alternative. Therefore, among other implications, the

behavioral model with cognitive discounting can easily avoid the forward guidance puzzle.1

With cognitive discounting, Gabaix (2020) adds a behavioral element to the model, but otherwise

retains the assumption of rational expectations. Those rational expectations about future variables

are simply shrunk toward steady states more quickly for longer horizons. However, a behavioral

alternative to rational expectations has been considered for a long time in the macroeconomics

literature and is provided by the literature on adaptive learning (e.g., Marcet and Sargent, 1989,

Sargent, 1993, 1999, Evans and Honkapohja, 2001, 2013).

1Other mechanisms have been proposed in the literature to deal with the forward guidance puzzle: finite planning
horizons (Woodford, 2018), imperfect common knowledge (Angeletos and Lian, 2018), finite lives (Del Negro et al.,
2015), preferences with temptation and self-control (Airaudo, 2020), and others. In many cases, they lead to similar
loglinearized equations for the New Keynesian model. Meggiorini (2020) provides an empirical comparison of different
approaches. Here, we focus on cognitive discounting as a mechanism that captures insights from psychological research
(Gabaix, 2019) and that can be simply adapted to models with other types of expectation formation.
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The models with cognitive discounting and with expectations based on learning represent two

different behavioral models. In the first case, as we have discussed, expectations remain based

on the rational expectations assumption, but they are more heavily discounted when they refer

to longer-term horizons. Under adaptive learning, instead, expectations are formed from agents’

perceived models of the economy. Often, but not always, the perceived models share the same

variables that would exist in the model solution under rational expectations (that is, agents’ models

are correctly specified, since they include every relevant variable that would matter under rational

expectations). But the agents’ knowledge and degree of understanding about the economy are

limited: they cannot know the values of some aggregate parameters, such as the degree of price

stickiness in the economy, or the monetary policy reaction coefficients. As a result, they cannot

infer the coefficients related to the reduced-form dynamics of the economy, as they would under

rational expectations; for example, they cannot know how sensitive output is to interest rates, how

steep the Phillips curve is, and how persistent output and inflation fluctuations are likely to be.

However, they form beliefs about these interrelationships, and they update their beliefs over time

based on the past time series data that they observe.

On one hand, agents’ degree of understanding appears more limited under learning than un-

der cognitive discounting: they lack full knowledge about the magnitudes of dynamic interactions

among macroeconomic variables. Also, in their perceived models, agents are learning about in-

tercept coefficients, hence they are allowed to make mistakes in inferring the steady state of the

variables. On the other hand, in the cognitive discounting model, agents have a biased model of

the economy (as a result of the extra discounting), and the bias is permanent: they are prevented

from learning the truth even in the long run. Under learning, instead, agents have imperfect beliefs

during transition phases, but they may converge to the rational expectations equilibrium (or to a

distribution around it) in the long run.

The two behavioral elements can, in principle, coexist. Alternatively, it is conceivable that

myopia may become redundant when rational expectations are replaced by boundedly-rational

expectations with learning.

This paper studies a Behavioral New Keynesian model that incorporates cognitive discounting

and alternative expectational assumptions. We examine the model under rational expectations, and

two versions of subjective expectations with adaptive learning: infinite-horizon learning and Euler-

equation learning. Under infinite-horizon learning, current macroeconomic variables are influenced

by expectations far into the future. Under Euler-equation learning, instead, the New Keynesian

model resembles the one under rational expectations, with output and inflation expressed as a

function of one-period-ahead expectations.

The model is then estimated using a full-information Bayesian approach to evaluate the impor-

tance of cognitive discounting in models with rational expectations and, particularly, with learning
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replacing rational expectations. In that case, the learning and cognitive discounting parameters

are all jointly estimated, along with the remaining structural parameters.

Main Findings. The empirical results confirm the need for substantial degrees of cognitive

discounting in the benchmark framework with rational expectations. Under learning with infinite-

horizon expectations, the data still indicate that large, perhaps unrealistically so, degrees of my-

opia are needed. Under infinite-horizon learning, the model equations become, in fact, extremely

forward-looking, with long-horizon forecasts about future output gaps, inflation, and interest rates,

until the indefinite future mattering for current realizations. Such a framework fits the data as well

as rational expectations, but it similarly needs a large enough degree of myopia as a counterbal-

ance to the agents’ extreme farsightedness. Under Euler-equation learning, on the other hand, the

empirical importance of myopia is substantially attenuated. The estimates indicate values of the

cognitive discounting factor rising much closer to one.

We compare the fit of the model under different expectation formation assumptions. The model

with limited cognitive discounting and subjective expectations formed according to an Euler-

equation learning framework fits macroeconomic data decisively better than the alternatives. The

outperformance persists in the full sample analysis and in both pre-1979 and post-1982 subsamples.

Rational expectations and infinite-horizon learning specifications with substantial myopia, instead,

achieve a similar lower fit.

Under rational expectations, the data prefer a specification in which the impact of forward

guidance is severely altered: the effects of monetary policy are stronger at shorter anticipation

horizons, and almost nil at horizons longer than 2-3 years. But the model’s effort to attenuate

the otherwise implausible effects of forward guidance comes at a cost. The estimated myopia

substantially reduces the effectiveness of conventional, unanticipated, monetary policy shocks. Only

the model with Euler-equation learning can match closely the impulse response of the output gap to

monetary policy shocks from a VAR; the responses are underestimated under rational expectations

and infinite-horizon learning.

Contribution to the Literature. Our paper aims to contribute to the growing literature

that can be broadly referred to as behavioral macroeconomics. Various papers have proposed more

or less behavioral adjustments to the benchmark New Keynesian model, often with the goal to

increase discounting in order to attenuate the forward guidance puzzle. Del Negro et al. (2015)

are the first to document the puzzle and show that a perpetual-youth specification can dampen the

effects of forward guidance. Different behavioral features can be added into the model to induce

stronger discounting of future variables: besides Gabaix (2020), who introduces microfoundations

for cognitive discounting, Woodford (2018) assumes that agents optimize only with finite planning

horizons, but are boundedly-rational beyond such horizons, Angeletos and Lian (2018) model im-

perfect coordination and higher-order uncertainty, Airaudo (2020) inserts temptation in the utility
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function, and Garcia-Schmidt and Woodford (2019) and Farhi and Werning (2019) introduce level-k

thinking as a mechanism to dampen future fluctuations.2 While many of these approaches lead to

comparable loglinearized equations for the benchmark New Keynesian model, Gabaix’s behavioral

modification is possibly easier to generalize to alternative models and expectational assumptions.

In this area, our paper aims to provide further empirical evidence on the importance of cognitive

discounting. Behavioral New Keynesian models with cognitive discounting are estimated in Ilabaca,

Meggiorini, and Milani (2020), Meggiorini (2020), and Andrade, Cordeiro and Lambais (2019). This

paper shows that the importance of the newly added behavioral feature is sensitive to the modeling

of expectations. The evidence for myopia may be only minimal when rational expectations are

replaced by its leading alternative, subjective expectations with adaptive learning.

At a broader level, our work contributes to the research denoted in Woodford (2013) as macroeco-

nomics without the rational expectations hypothesis. Cole and Milani (2019) pinpoint the modeling

of expectations as a key source of misspecification in New Keynesian models. The assumption of

rational expectations is responsible for the empirical failure of the model to capture the dynamic

interrelationships among macroeconomic variables, monetary policy decisions, and observed ex-

pectations. More backward-looking expectations, instead, help reconcile the model with the data.

The evidence from experimental work (e.g., Hommes, 2011, 2021) is also supportive of similarly

adaptive behavior in the formation of macroeconomic expectations.

More specifically, our paper replaces rational expectations with adaptive learning. In this re-

spect, the paper adds to a long literature that considers learning as a natural refinement for rational

expectations (DeCanio, 1979, Bray and Savin, 1986, Sargent, 1993, 1998, Evans and Honkapohja,

2001). Some papers propose learning as a single behavioral feature that can improve the model’s

ability to fit time series data (Milani, 2007, Slobodyan and Wouters, 2012). Learning helps gener-

ating endogenous persistence in the model (Orphanides and Williams, 2003, Milani, 2007, 2017),

it leads to business cycle amplification (Eusepi and Preston, 2011, Milani, 2011), endogenous time-

varying volatility (Branch and Evans, 2007, Milani, 2014), and it accounts for changing responses

to shocks over time (e.g., Milani, 2009). Cole (2020, 2021) highlights private sector’s learning as a

mechanism that can lessen the impact of forward guidance policies.

Here, we merge new (cognitive discounting) and old (boundedly-rational expectations and adap-

tive learning) behavioral elements in the New Keynesian model to show that learning is still an

important feature that needs to be accounted for to explain macroeconomic observations.

2McKay, Nakamura and Steinsson (2016), instead, assume limited risk sharing and incomplete markets to intro-
duce additional discounting. These modifications yield a precautionary saving motive that reduces the response of
consumption to future interest rates.
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2. Behavioral New Keynesian Models

We assume that the economy is summarized by a behavioral version of the New Keynesian model,

as derived in Gabaix (2020). The behavioral feature that is added into the model is cognitive

discounting : when thinking about economic developments far into the future, agents shrink their

perceptions toward steady-state values of the variables. Deviations around the steady state that

are expected to happen k periods in the future are more heavily discounted by a factor m̄k, with

m̄ ∈ [0, 1] measuring the strength of cognitive discounting. The additional discounting captures

agents’ partial myopia toward the future, or a ‘term structure’ of inattention, with agents being

more inattentive with respect to more distant events.3 Gabaix (2020) also outlines possible deeper

microfoundations for cognitive discounting based on iterated mental simulations under noisy signals.

Let’s assume that the state vector of the economy St, once demeaned and loglinearized, evolves

as:

St+1 = FSt + εt+1 (1)

where F is a matrix of coefficients and εt+1 denotes a vector of mean-zero innovations. Behavioral

agents perceive instead

St+1 = m̄ (FSt + εt+1) (2)

with m̄k representing the previous cognitive discounting parameter. Behavioral agents thus form

expectations EBRt [St+k] = m̄kEt [St+k] = m̄kF kSt+k, where the operators EBRt and Et denote be-

havioral and rational expectations, respectively. Perceived fluctuations in the future are, therefore,

discounted by a factor m̄k.

We present the behavioral model under alternative expectational formation assumptions: rational

expectations, subjective expectations with infinite-horizon learning, and subjective expectations

with Euler-equation (i.e., one-period-ahead) learning.

2.1. Rational Expectations. When agents are subject to cognitive discounting, but still form

expectations about macroeconomic variables according to the rational expectations hypothesis as

in Gabaix (2020), the model is represented by the following loglinearized equations:

xt = MEtxt+1 − σ(it − Etπt+1 − rnt ) (3)

πt = βMfEtπt+1 + κxt + ut (4)

it = ρit−1 + (1− ρ) [χππt−1 + χxxt−1] + εt. (5)

3Therefore, we will refer to this behavioral feature in the paper interchangeably as cognitive discounting, or myopia,
or inattention.
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where xt denotes the output gap, πt inflation, it the nominal interest rate, rnt and ut are de-

mand (natural-rate) and supply (cost-push) disturbances, which evolve as AR(1) processes as

rnt = ρrr
n
t−1 + εrt and ut = ρuut−1 + εut , and εt is an i.i.d. monetary policy shock. The pa-

rameter σ measures the elasticity of intertemporal substitution, β denotes the household discount

factor, κ ≡ (1−αβ)(1−β)
α

ω+σ−1

1+ωθ denotes the slope of the Phillips curve, which inversely depends on

the Calvo price stickiness parameter α,4 and ρ, χπ, χx, are monetary policy coefficients. Equation

(3) represents a loglinearized Euler equation, equation (4) is a New Keynesian Phillips curve, and

(5) is a Taylor rule, which characterizes monetary policy in the economy.5 The model equations

remain similar to those in the canonical New Keynesian model, assuming that conventional ex-

pectations are replaced by behavioral expectations EBRt = MkEt. In this case, Et still denotes

rational expectations, which imply that the mathematical conditional expectation is based on the

true model of the economy. Agents know the model, the model parameters, and the stochastic

properties of exogenous disturbances, and condition their expectations on this information. The

behavioral addition, however, is that agents are subject to cognitive discounting and, therefore,

they discount future output gaps and inflation (in deviation from their steady states) at higher

rates. The parameters M,Mf ∈ [0, 1] are given by M = m̄ and Mf = m̄
(
α+ 1−βα

1−βαm̄ (1− m̄)
)

,

which depend on m̄, the main behavioral coefficient of interest. Forcing the coefficient m̄ to equal

one would imply M = Mf = 1 and would yield the standard formulation of the New Keynesian

model.

Under rational expectations, the model can be written as

Γ0ξt = Γ1ξt−1 + Ψνt + Πηt (6)

where ξt = [xt, πt, it, r
n
t , ut, Etxt+1, Etπt+1]′ is a vector including the model’s endogenous variables,

the structural disturbances, and the expectation terms, νt = [εrt , ε
u
t , εt] is a vector of exogenous

demand, supply, and monetary policy, innovations, and ηt = [ηxt , η
π
t ]′ collects the expectational

errors, which are defined as ηxt = xt−Et−1xt and ηπt = πt−Et−1πt, such that Etη
x
t+1 = Etη

π
t+1 = 0,

∀t. If the equilibrium exists and is unique, a unique mapping can be found between expectational

errors and structural innovations. The law of motion for the economy is then given by the model

solution under rational expectations (e.g., Sims, 2002):

ξt = Fξt−1 +Gνt. (7)

4The remaining parameters ω and θ denote the inverse of the Frisch elasticity of labor supply and the elasticity of
substitution across differentiated goods.
5The monetary policy rule is ‘operational’ in the sense of McCallum (1999), i.e., it is assumed to respond to variables
dated in (t-1) that the central bank can observe in real-time.
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2.2. Subjective Expectations & Infinite-Horizon Learning. We now relax the assumption

of rational expectations and allow agents to form subjective, boundedly-rational, expectations. The

model can be re-derived from its primitives under the assumption of subjective expectations, as

shown in Preston (2005). Households’ decisions are, therefore, optimal conditional on their beliefs

and satisfy at every point in time their intertemporal budget constraint.

The economy, under subjective expectations, is summarized by the following equations:

xt = Êt

∞∑
T=t

(βM)T−t [(1− β)xT+1 − σ(iT − πT+1 − rnT )] (8)

πt = Êt

∞∑
T=t

(
αβMf

)T−t
[κxT + (1− α)βπT+1 + uT ] (9)

it = ρit−1 + (1− ρ) [χππt−1 + χxxt−1] + εt. (10)

Preston (2005) shows that, with more general (subjective) expectational assumptions, long-

horizon expectations explicitly enter the model. Contemporaneous values of the output gap and

of the economy’s inflation rate are, therefore, influenced by expectations until the entire infinite

future. Models that follow the same infinite-horizon approach have also been adopted in Preston

(2006, 2008), Eusepi and Preston (2010), Milani (2006), among others.

Conventional expectations are again replaced using the behavioral expectation operator ÊBRt Yt+k =

MkÊtYt+k. But now the formation of expectations allows for subjective, not necessarily rational,

expectations, denoted by Êt. The model hence includes two behavioral elements: infinite-horizon

learning and cognitive discounting.

Expectations Êt about future macroeconomic variables are formed by agents according to their

perceived law of motion (PLM)

Yt = φ0,t + φ1,tYt−1 + εt (11)

where Yt = [xt, πt, it, r
n
t , ut]

′ and εt denotes the error term in the regressions. The perceived model

is assumed to be correctly-specified, as it includes the same variables that would appear in the

Minimum State Variable (MSV) solution under rational expectations. Agents’ beliefs regarding

intercept terms are collected in the vector φ0,t, and those regarding the interrelationships among
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variables are in the matrix φ1,t:
6

φ0,t =


φx0,t
φπ0,t
φi0,t
0

0

 , φ1,t =


φxx1,t φxπ1,t φxi1,t φxr1,t φxu1,t

φπx1,t φππ1,t φπi1,t φπr1,t φπu1,t

φix1,t φiπ1,t φii1,t φir1,t φiu1,t
0 0 0 ρr 0

0 0 0 0 ρu

 ,

The beliefs, collected in φ̂t = (φ0,t, φ1,t)
′, evolve according to a constant-gain updating algorithm

as

φ̂t = φ̂t−1 + gR−1
t Xt

(
Yt −X ′tφ̂t−1

)′
(12)

Rt = Rt−1 + g
(
XtX

′
t −Rt−1

)
, (13)

where Xt ≡ [1, Yt−1]′ and where the second expression characterizes the updating of the coefficients’

precision matrix Rt. The parameter g denotes the constant-gain coefficient and it measures a

different type of possible cognitive bias: “recency bias”. With a constant gain, agents weigh recent

observations more heavily than those in the more distant past; recency bias is more prevalent the

higher the value of g. An alternative interpretation is also possible: learning with a constant gain

offers agents an updating algorithm that is successful in tracking systems with parameters that may

vary at unknown times. In such case, a higher gain would indicate agents who are more worried

about structural breaks and, therefore, more responsive to incoming information.

Expectations are formed at each horizon T , based on (11) and with beliefs updated according to

(12)-(13), to yield

Êt−1YT+1 = (I − φ1,t−1)−1(I − φT−t+2
1,t−1 )φ0,t−1 + φT−t+2

1,t−1 Yt−1. (14)

Agents form expectations based on an information set up to t− 1, which is assumed to include the

exogenous disturbances. Expectations formed for each horizon T as in (14) are substituted into the

original system (8)-(10), to derive the Actual Law of Motion of the economy, or ALM.

6It is typical in these models to assume that agents know the values of ρr and ρu: this is irrelevant for the results,
since agents would learn very quickly the parameters for exogenous processes.
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The infinite sums, which we denote by ΣβM and ΣαβM , become:

ΣβM = Êt−1

∞∑
T=t

(βM)T−t YT+1 =(I − φ1,t−1)−1
[
(1− βM)−1I − φ2

1,t−1(I − βMφ1,t−1)−1
]
φ0,t−1+

+ (I − βMφ1,t−1)−1φ2
1,t−1Yt−1

=B0(φ0,t−1, φ1,t−1) +B1(φ0,t−1, φ1,t−1)Yt−1 (15)

ΣαβM = Êt

∞∑
T=t

(
αβMf

)T−t
YT+1 =(I − φ1,t−1)−1

[
(1− αβMf )−1I − φ2

1,t−1(I − αβMfφ1,t−1)−1
]
φ0,t−1+

+ (I − αβMfφ1,t−1)−1φ2
1,t−1Yt−1

=C0(φ0,t−1, φ1,t−1) + C1(φ0,t−1, φ1,t−1)Yt−1. (16)

The system can then be written as

A0Yt =A1Yt−1 +A2ΣβM +A3ΣαβM +A4νt (17)

=A1Yt−1 +A2 (B0(φ0,t−1, φ1,t−1) +B1(φ0,t−1, φ1,t−1)Yt−1) +

A3 (C0(φ0,t−1, φ1,t−1) + C1(φ0,t−1, φ1,t−1)Yt−1) +A4νt (18)

The ALM, more compactly, is given by

Yt = A(φ̂t−1,Θ, m̄) + F (φ̂t−1,Θ, m̄)Yt−1 +G(Θ, m̄)νt (19)

where A(·) = A−1
0 [A2B0 +A3C0], F (·) = A−1

0 [A1 +A2B1 +A3C1], and G = A−1
0 A4. The expres-

sion makes clear that the vector and matrices of parameters in the ALM depend on the state of

beliefs φ̂t−1, on the structural parameters of the New Keynesian model collected in Θ, and on the

degree of myopia or cognitive discounting m̄.

2.3. Subjective Expectations & Euler-Equation Learning. Under some conditions, derived

and discussed in Honkapohia, Mitra, and Evans (2012),7 the equations in (8)-(10), can be simplified

to arrive at a system where only one-period-ahead expectations matter. Agents’ behavior is based

on the Euler equation, but obtained under subjective expectations. The same approach, which

7In the Euler-equation approach, agents need to forecast their consumption next period. In the typical New Keynesian
economy with market clearing condition ct = yt, agents, indexed by i, would need to recognize that cit = yt, ∀i, t.
Agents should be able to observe this condition from past data or to quickly learn that the equality always holds
true. As a result, they would understand and be able to forecast that next-period consumption will equal next-
period output. This condition, in addition to the law of iterated expectations holding at the individual level, allows
the microfoundations under subjective expectations to produce the same system that is obtained under rational
expectations.
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can be denoted as Euler-equation learning, is used in the majority of works that assume adaptive

learning (e.g., Bullard and Mitra, 2002, Evans and Honkapohja, 2001, 2003, Sargent, 1993, 1999,

among countless others).

The model, therefore, shares the same loglinearized equations as the rational expectations version,

only with a different expectation operator.

xt = MÊtxt+1 − σ(it − Êtπt+1 − rnt ) (20)

πt = βMf Êtπt+1 + κxt + ut (21)

it = ρit−1 + (1− ρ) [χππt−1 + χxxt−1] + εt. (22)

Expectations, denoted by Êt, are formed according to the same PLM given by expression (11), and

with beliefs updated over time according to the constant-gain learning algorithm in (12)-(13), as

they were under infinite-horizon learning. Expectations regarding variables at (t+ 1) are formed as

Êt−1Yt+1 = (I + φ1,t−1)φ0,t−1 + φ2
1,t−1Yt−1

=B0(φ0,t−1, φ1,t−1) +B1(φ0,t−1, φ1,t−1)Yt−1. (23)

Such expectations can be substituted into the original system (20)-(22), which can be written as

A0Yt =A1Yt−1 +A2Êt−1Yt+1 +A3νt, (24)

to obtain the ALM:

Yt = A(φ̂t−1,Θ, m̄) + F (φ̂t−1,Θ, m̄)Yt−1 +G(Θ, m̄)νt (25)

where A(·) = A−1
0 (A2B0), F (·) = A−1

0 (A1 +A2B1), and G = A−1
0 A3. As before, the model

incorporates two main behavioral features: subjective expectations from a constant-gain learning

model and cognitive discounting.

3. Structural Bayesian Estimation

We estimate the vector of structural and behavioral parameters jointly. We use quarterly data on

the output gap, inflation, and the Federal Funds rate, as observables for xt, πt, and it. The output

gap is calculated as the log-difference between Real GDP and Real Potential GDP, as estimated

by the Congressional Budget Office. Inflation is the log-first difference of the Implicit GDP Price

Deflator. The short-term nominal interest rate is given by the Federal Funds Rate, transformed

from yearly into the corresponding quarterly rate. All series are obtained from FRED, the Federal

Reserve Database, maintained by the Federal Reserve Bank of St. Louis.
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The estimation sample spans the period from 1960:Q1 to 2007:Q2.8 As a robustness check, we

will later present the results obtained when splitting the sample in pre- and post-Volcker periods.

Table 1 summarizes our choices of priors, which are conventional in the literature. The elasticity

of intertemporal substitution σ is assumed to follow a prior Gamma distribution with mean 1.5

and standard deviation 0.75. The Calvo price-setting parameter has a Beta distribution prior that

implies prices that are reset, on average, every three quarters, in line with microeconomic evidence.

The policy reaction coefficients to inflation and the output gap are assumed to have Normal priors

with mean 1.5 and standard deviation 0.25, and mean 0.1 and standard deviation 0.05, respectively.

For the cognitive discounting parameter m̄, we follow previous papers in selecting a Beta prior with

mean 0.8 and standard deviation 0.15; later, we will consider a Uniform prior and a Gamma prior

that weighs against discounting by favoring a value of 1, for robustness. We assume a Beta prior

also for the constant gain coefficient, with a 0.025 mean and 0.01 standard deviation, as in Milani

(2017). Finally, we choose Beta priors for the remaining autoregressive coefficients and inverse

Gamma priors for the standard deviations of the exogenous innovations.9

The structural model is estimated using a full-information Bayesian approach. Draws are gen-

erated using a Metropolis-Hastings algorithm; we run a total number of 1,500,000 MCMC draws

for each specification. We discard the initial 40% of draws as burn-in and thin the chain by saving

only one every hundred draws to reduce the autocorrelation of the draws.

4. Results

The posterior estimates for the full-sample estimation are shown in Table 1. Under rational

expectations, substantial levels of inattention are needed to fit the data. The posterior mean

estimate for the cognitive discounting parameter m̄ is equal to 0.416, with the entire 95% posterior

density interval falling well below one. The data, therefore, require substantial discounting of

future expected variables, in contrast with the implications of benchmark New Keynesian models

that yield discounting factors equal to one for output and to β for inflation.

With subjective expectations and under infinite-horizon learning, contemporaneous output gaps,

inflation, and interest rates, are expressed as a function of long-horizon expectations until the

indefinite future. As a consequence of such long horizons, the model still requires extreme degrees

8In the estimation, we use data from 1954:Q3, the first quarter of availability of Federal Funds rate data, but we start
computing the likelihood function only from 1960:Q1. Observations before 1960 are simply used for initialization of
the learning process. We conclude the estimation before the beginning of the 2007-2009 Great Recession, to avoid
having to deal with the binding effective lower bound constraint in policy rates.
9The only parameters that are fixed in the estimation are the discount factor β = 0.99, the inverse of the Frisch
elasticity ω = 2, and the elasticity of substitution across differentiated goods θ = 11, which implies a steady-state
markup of prices over marginal costs equal to 10%.
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of myopia to fit the data. The posterior mean for m̄ falls around 0.2, which indicates even stronger

discounting than under rational expectations.

The importance of cognitive discounting, however, is considerably reduced when rational expecta-

tions are replaced by subjective expectations formed from a learning model with the Euler-equation

approach. In this case, the model specification resembles the one under rational expectations: only

one-period-ahead expectations enter the Euler equation and the New Keynesian Phillips curve.

Under this type of learning, the model can fit macroeconomic data without resorting to extreme

degrees of inattention. The estimate for m̄ rises much closer to 1, with a posterior mean equal to

0.9366.

Therefore, while the Behavioral New Keynesian model that has been proposed in the literature

retains the assumption of rational expectations, we show that the addition of another behavioral

feature, such as deviations from rational expectations and learning by the agents, can substantially

reduce the empirical need for cognitive discounting.

The specification with expectations formed according to the Euler-equation learning model also

provides the best overall fit of the data. We calculate the models’ log marginal likelihoods (shown

in the last row of Table 1). Rational expectations and infinite-horizon learning achieve similar fit,

with the former slightly outperforming. But Euler-equation learning leads to sizable improvements

in model fit: the resulting Bayes factor would suggest ‘decisive’ evidence in favor of Euler-equation

learning versus the alternatives, based on Jeffreys’ (1961) widely-used interpretative scale.

Cognitive discounting, however, is not redundant. When we re-estimate the model with Euler-

equation learning and fix m̄ at 1, the resulting marginal likelihood falls to -270.4209 (the full set of

posterior estimates for this case are shown in Table 4). The specification with both Euler-equation

learning and (moderate) myopia is, therefore, preferred by the data.

Turning to the remaining estimated parameters, the posterior results show that the monetary

policy estimates remain similar across model specifications. The degree of price stickiness also

remains in the same range, around 0.8, while the estimate for σ is lower under rational expectations.

Another major difference relates to the properties of structural disturbances: whereas rational

expectations and infinite-horizon learning require large autocorrelation coefficients in the natural

rate and cost-push disturbance processes, the required persistence is reduced under Euler-equation

learning. The estimates for ρr and ρu fall from values around 0.9 under rational expectations to

0.2278 and 0.0654 under Euler-Equation learning. As already discussed in Milani (2007, 2017),

learning helps the models match the observed persistence in macroeconomic data.

The estimates for the constant-gain coefficients differ between the two types of learning models:

the discounting of observations in the more distant past is considerably larger under infinite-horizon

learning (as implied by a posterior mean for the gain equal to 0.0454) than under Euler-equation

learning (with a lower estimated gain equal to 0.0049).
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4.1. Expectations and the Effects of Monetary Policy. Under rational expectations, forward

guidance announcements have implausibly large effects on the economy (Del Negro et al., 2015).

In Figure 1, we show the responses of inflation to an anticipated monetary policy shock at horizons

0 to 80 quarters. The response in the left panel mirrors those identified in McKay et al. (2016)

and Gabaix (2020): in the benchmark New Keynesian model with m̄ = 1, the impact of forward

guidance is magnified for longer anticipation horizons, making the model potentially unstable.

In the right panel, we repeat the same exercise, but now assuming the same degree of cognitive

discounting that has been empirically estimated: m̄ is fixed at its posterior mean of 0.416. The

response of inflation to forward guidance is drastically different, with shocks at the lowest horizons

now having the largest effects. Anticipations with horizons above two years are largely ineffective,

given that agents strongly discount them.

Therefore, to fit the data, the rational expectations specification depends upon a large enough

degree of myopia, which is needed to shut down the effects of anticipations far into the future.

But the addition of severely myopic agents comes at a cost: the implied responses to conventional,

unanticipated, monetary policy shocks are also attenuated.

Figure 2 shows the impulse responses of the output gap to unanticipated, expansionary, monetary

policy innovations, under the different expectation assumptions, and compared with the response

obtained from a VAR model estimated on the same three endogenous variables (output gap, in-

flation, Federal funds rate). The model with Euler-equation learning generates output responses

that track very closely the responses from the VAR. The specifications with rational expectations

and infinite-horizon expectations, instead, in consequence of the sizable degree of myopia that

they require to dampen the effects of anticipations, end up severely underestimating the effects of

monetary policy.

5. Robustness

i. Split samples. Several papers have documented time variation in the coefficients related

to monetary policy and in the standard deviations of exogenous shocks before and after the early

1980s. The degree of inattention may also vary over time, and, in particular, assume very different

values in samples characterized by high inflation and macroeconomic instability, such as the 1970s,

compared with low-inflation low-volatility samples, as the post-1980 decades.

Therefore, to investigate the robustness of our main findings, we repeat the estimation now

focusing on two sub-samples: 1954:Q3-1979:Q2 and 1982:Q1-2007:Q2. The results are reported in

Table 2.

Under rational expectations, the estimated degrees of cognitive discounting shift from 0.63 to

0.409 over the samples. As before, the infinite-horizon learning case requires the largest discounting,

and this remains true in both sub-samples. In the pre-1979 period, the Euler-equation learning
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results suggest values of myopia almost identical to the full sample estimates. The estimated

coefficient, however, is lower in the post-1982 sample, with a posterior mean estimate equal to 0.79.

Inattention is thus more prevalent in periods characterized by overall macroeconomic stability, as

could be expected. We need to remark, however, that for post-1982 data, the posterior distribution

for m̄ displays a clear bimodality: the posterior mode is obtained at a value of 0.9112, suggesting

more limited inattention not far off its full-sample estimate, but there is also a lower-probability

mode that concentrates around lower values.

One issue with the estimation for pre-Volcker samples is the possibility of equilibrium indetermi-

nacy. The results in Ilabaca, Meggiorini, and Milani (2020), however, show that, in a model with

cognitive discounting and rational expectations, indeterminacy is rejected over each sample (the

paper estimates the model allowing for both indeterminacy and determinacy). The data strongly

prefer a specification where monetary policy in the 1960-70s is indeed passive, but where bounded

rationality is pervasive enough to induce determinacy.10 Our estimates are similar here: they indi-

cate a monetary policy that responds with coefficients below one toward inflation before Volcker,

but agents’ inattention is strong enough to restore determinacy.

The model comparison exercise paints a similar story as in the previous section: the fit of the

model under rational expectations and infinite-horizon learning are comparable in the pre-1979

samples, whereas infinite-horizon learning is preferred after 1982. But, in each sample, the data

are clearly best explained by the model with Euler-equation learning and only limited degrees of

cognitive discounting.

ii. Taylor Rule with Anticipated Shocks. We estimate the model now allowing for explicit

forward guidance by the central bank, modeled through the addition of anticipated, or ‘news’,

shocks in the Taylor rule. The policy rule becomes

it = ρit−1 + (1− ρ) [χππt−1 + χxxt−1] + εt + ε4
t−4 + ε8

t−8, (26)

where ε4
t−4 and ε8

t−8 denote monetary shocks that are anticipated four and eight quarters in advance.

We assume Gamma(0.3,0.3) priors for the standard deviations of the news shocks.11

Table 3 reports the estimates. The posterior mean values for m̄ remain similar to those estimated

in the model with only unanticipated monetary policy shocks, and the Euler-equation learning

specification still outperforms the alternatives.

10In the model, and as shown in Gabaix (2020), the modified Taylor principle is given by χπ + 1−βMf

κ
χx +

(1−βMf )(1−M)
κσ

> 1. Under learning, instead, the estimation doesn’t pose particular problems and can be performed
whether the equilibrium is E-stable or E-unstable (e.g., Milani, 2008).
11The prior assigns progressively lower probability to larger standard deviations. The prior choice follows Schmitt-
Grohé and Uribe (2012) and Milani and Rajbhandari (2020).
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iii. Uninformative priors for m̄. In the benchmark estimation, we assumed an informative

Beta(0.8,0.15) prior for the cognitive discounting coefficient. In the Euler-equation learning specifi-

cation, we find that a limited degree of cognitive discounting still improves the model fit compared

with the benchmark case, based on the marginal likelihoods. But the model comparison conclusions

may be affected by the choice of an informative prior that favors a positive, albeit modest, myopia

coefficient.

Therefore, we evaluate the sensitivity of the results to the use of two alternative priors: an

uninformative Uniform[0,1] prior for m̄ and a Gamma(0.3,0.3) prior for 1 − m̄. A Gamma prior

with equal values for mean and standard deviation assigns highest probability to a value of zero,

and progressively lower probability to larger values. The prior is, therefore, set for 1−m̄, to penalize

more sizable deviations from the benchmark model with no inattention.

The results, presented in Table 4, are again almost identical. With a Uniform prior, the posterior

mean estimate for m̄ is equal to 0.9382; the log marginal Likelihood is -268.7747, which still

outperforms the case with fixed m̄ = 1 (for which the log marginal Likelihood equals -270.4209).

With the Gamma prior, the estimate for m̄ is slightly higher at 0.9437, and the log marginal

likelihood equals -267.9884. Therefore, independently of the prior, the data always indicate modest

degrees of discounting, and favor a specification where learning and modest cognitive discounting

coexist.

iv. Different gains for different variables. While it is common to assume a single constant-

gain coefficient in models with adaptive learning, it is possible that agents adopt different gains for

different variables. If agents perceive different probabilities of structural breaks in the dynamics

of different variables, it would be natural that they would weigh incoming information differently.

Therefore, we re-estimate the model, but now allowing for different constant gain coefficients for the

output gap, inflation, and interest rate perceived laws of motion. The posterior estimates indicate

that agents perceive more instability in the inflation equation and less in the output gap. The

posterior means for the gains are 0.0059 for output, 0.0370 for inflation, and 0.0198 for the interest

rate. Nonetheless, the evidence on inattention remains similar, with m̄ equal to 0.88, slightly lower

than in the benchmark case. The marginal likelihood is -266.2732, suggesting an improved fit

compared to the case of a single gain.

It is conceivable that agents similarly display different degrees of myopia when dealing with

different variables. While this is theoretically plausible, the corresponding parameters will not be

separately identifiable in our framework. Hence, in the paper we focus only on a general degree of

myopia, rather than a variable-specific, or agent-specific, level.
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6. Conclusions

The adaptive learning literature has long provided an alternative approach to modeling expec-

tations in macroeconomic models. Compared with the rational expectations hypothesis, adaptive

learning allows researchers to introduce behavioral elements into their models: economic agents

can form subjective perceptions about economic relationships, they can update their beliefs based

on past events, and, in doing so, they may display cognitive biases, such as the “recency bias”

captured by constant-gain learning.

Recently, a different literature, which in large part arose from efforts to attenuate the forward-

guidance puzzle, has proposed Behavioral New Keynesian models. Agents in these models display

cognitive discounting, that is, they are myopic toward events expected to happen far into the future,

which they therefore discount at a much higher rate. Aside from the extra discounting, these models

still maintain the rational expectations assumption.

This paper shows that under rational expectations, the model requires extremely large degrees

of myopia to fit macroeconomic data. These are necessary to avoid unrealistically strong responses

of output and inflation to monetary policy shocks expected to happen far into the future.

We also estimate the model under alternative expectation formation assumptions based on the

adaptive learning literature: subjective expectations with infinite-horizon learning and subjective

expectations with Euler-equation learning. Under infinite-horizon learning, agents need to form

expectations about macroeconomic variables until the infinite future. The estimates indicate that

the degree of cognitive discounting that is needed to fit the data is even higher, in order to alle-

viate the agents’ farsightedness in the model. Under Euler-equation learning, instead, the model

equations resemble those under rational expectations, with output gap and inflation expressed as a

function of one-period-ahead expectations. In this case, the model with learning can accurately fit

the data with only minimal degrees of cognitive discounting. Moreover, the Euler-equation learning

specification provides the best fit across all specifications.

In addition to shedding light on the behavioral features that seem to matter in macroeconomic

data, the empirical results also carry implications for monetary policy. If learning matters, then

price-level targeting may become optimal, as illustrated by Eusepi and Preston (2018). If cognitive

discounting is an important feature of the data, instead, the analysis in Gabaix (2020) shows that

price-level targeting may lead to lower-welfare outcomes. Understanding the behavioral factors

that play a role at a macroeconomic level is hence important for the choice of desirable policies and

is likely to be a prolific area for future research.
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Param. Prior Distr. Posterior Distributions

RE IH EE

IS & PC
σ Γ(1.50,0.75) 0.1862 [0.09,0.34] 0.3381 [0.14,0.60] 0.3258 [0.20,0.49]

α B(0.66,0.1) 0.8273 [0.73,0.91] 0.7867 [0.65,0.89] 0.7989 [0.71,0.89]

Taylor Rule
ρ B(0.7,0.2) 0.8995 [0.85,0.94] 0.9035 [0.86,0.95] 0.9035 [0.86,0.95]

χπ N(1.5,0.25) 1.3052 [0.94,1.70] 1.3275 [0.95,1.74] 1.3182 [0.94,1.72]

χx N(0.1,0.05) 0.1451 [0.06,0.22] 0.1471 [0.06,0.23] 0.1489 [0.07,0.23]

Myopia
m̄ B(0.8,0.15) 0.4160 [0.17,0.67] 0.1976 [0.10,0.29] 0.9366 [0.89,0.98]

Learning
ḡ B(0.025,0.01) — 0.0454 [0.03,0.07] 0.0049 [0.002,0.01]

Shocks
ρr B(0.5,0.2) 0.9174 [0.87,0.96] 0.8939 [0.84,0.95] 0.2278 [0.09,0.37]

ρu B(0.5,0.2) 0.8833 [0.83,0.94] 0.7796 [0.69,0.86] 0.0654 [0.01,0.16]

σr Γ−1(0.30,1) 3.0477 [1.64,5.23] 2.7384 [1.35,5.62] 2.5735 [1.65,4.05]

σu Γ−1(0.30,1) 0.1766 [0.12,0.23] 0.2689 [0.24,0.30] 0.2609 [0.24,0.29]

σε Γ−1(0.30,1) 0.2338 [0.21,0.26] 0.2336 [0.21,0.26] 0.2337 [0.21,0.26]

logMarg. Likelihood -276.1951 -277.0829 -267.1622

Table 1. Posterior Estimates: Full-Sample Estimation. Note: The Table reports mean

posterior estimates, along with 2.5% and 97.5% percentiles. We ran 1,500,000 MH draws, discarding

the first 40% as initial burn-in.
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Param. Prior Distr. Posterior Distributions

RE IH EE

1954-1979 1982-2007 1954-1979 1982-2007 1954-1979 1982-2007

IS & PC
σ Γ(1.50,0.75) 0.3569 [0.16,0.66] 0.3029 [0.13,0.56] 0.6447 [0.30,1.05] 0.4377 [0.18,0.76] 0.7603 [0.39,1.26] 0.4195 [0.20,0.73]

α B(0.66,0.1) 0.7964 [0.67,0.90] 0.7662 [0.65,0.87] 0.7082 [0.58,0.85] 0.7914 [0.67,0.90] 0.7429 [0.61,0.88] 0.7957 [0.66,0.90]

Taylor Rule
ρ B(0.7,0.2) 0.7711 [0.65,0.89] 0.9186 [0.88,0.96] 0.7943 [0.67,0.91] 0.9195 [0.88,0.96] 0.7987 [0.68,0.92] 0.9199 [0.88,0.96]

χπ N(1,0.25) 0.7901 [0.53,1.08] 0.7651 [0.49,1.06] 0.7705 [0.49,1.09]

N(1.5,0.25) 1.4495 [1.00,1.91] 1.4221 [0.99,1.87] 1.436 [0.99,1.89]

χx N(0.1,0.05) 0.1666 [0.10,0.23] 0.1343 [0.05,0.23] 0.1663 [0.09,0.24] 0.1257 [0.04,0.21] 0.1654 [0.09,0.23] 0.1291 [0.04,0.21]

Myopia
m̄ B(0.8,0.15) 0.6305 [0.31,0.90] 0.4088 [0.17,0.66] 0.2746 [0.13,0.44] 0.2757 [0.16,0.39] 0.9371 [0.86,0.99] 0.7909 [0.36,0.95]

Learning
ḡ B(0.025,0.01) 0.0403 [0.02,0.06] 0.0332 [0.01,0.06] 0.0209 [0.01,0.03] 0.007 [0.002,0.02]

Shocks
ρr B(0.5,0.2) 0.8849 [0.81,0.96] 0.9316 [0.88,0.98] 0.8294 [0.73,0.93] 0.9059 [0.84,0.96] 0.2335 [0.07,0.42] 0.6089 [0.34,0.91]

ρu B(0.5,0.2) 0.8308 [0.73,0.93] 0.8226 [0.73,0.91] 0.6970 [0.55,0.83] 0.6890 [0.57,0.81] 0.1575 [0.03,0.33] 0.2430 [0.03,0.75]

σr Γ−1(0.30,1) 1.4343 [0.67,2.70] 1.3964 [0.74,2.56] 1.7265 [0.97,3.293] 1.4740 [0.73,2.99] 1.3936 [0.79,2.51] 1.4655 [0.78,2.75]

σu Γ−1(0.30,1) 0.1864 [0.11,0.28] 0.1226 [0.09,0.16] 0.3513 [0.30,0.41] 0.1824 [0.16,0.21] 0.3357 [0.29,0.39] 0.1782 [0.15,0.21]

σε Γ−1(0.30,1) 0.2065 [0.18,0.24] 0.1521 [0.13,0.17] 0.2016 [0.18,0.24] 0.1521 [0.13,0.17] 0.2070 [0.18,0.24] 0.1524 [0.13,0.17]

logMarg. Likelihood -156.3274 -38.2284 -156.4760 -35.7699 -145.8191 -28.8900

Table 2. Posterior Estimates: pre-1979 and post-1982 Split Sample Estimation.
Note: The Table reports mean posterior estimates, along with 2.5% and 97.5% percentiles. We ran

1,500,000 MH draws, discarding the first 40% as initial burn-in.
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Param. Prior Distr. Posterior Distributions

RE IH EE

IS & PC
σ Γ(1.50,0.75) 0.1843 [0.08,0.33] 0.3271 [0.16,0.59] 0.3282 [0.20,0.49]

α B(0.66,0.1) 0.8337 [0.74,0.92] 0.7926 [0.67,0.89] 0.7965 [0.71,0.89]

Taylor Rule
ρ B(0.7,0.2) 0.8988 [0.85,0.94] 0.9034 [0.85,0.95] 0.9038 [0.85,0.95]

χπ N(1.5,0.25) 1.3144 [0.94,1.71] 1.3123 [0.95,1.74] 1.3198 [0.93,1.73]

χx N(0.1,0.05) 0.1514 [0.07,0.23] 0.1499 [0.07,0.23] 0.1440 [0.06,0.23]

Myopia
m̄ B(0.8,0.15) 0.4655 [0.18,0.79] 0.1954 [0.10,0.29] 0.9364 [0.89,0.98]

Learning
ḡ B(0.025,0.01) — 0.0444 [0.03,0.07] 0.0049 [0.002,0.01]

Shocks
ρr B(0.5,0.2) 0.9177 [0.87,0.96] 0.8947 [0.84,0.95] 0.2276 [0.09,0.37]

ρu B(0.5,0.2) 0.8817 [0.82,0.94] 0.7810 [0.69,0.87] 0.0656 [0.01,0.16]

σr Γ−1(0.30,1) 2.8517 [1.29,5.43] 2.7602 [1.40,5.00] 2.5651 [1.62,4.02]

σu Γ−1(0.30,1) 0.1663 [0.09,0.23] 0.2687 [0.24,0.30] 0.2607 [0.24,0.29]

σε Γ−1(0.30,1) 0.1528 [0.08,0.23] 0.1644 [0.09,0.24] 0.1668 [0.09,0.24]

σε4 Γ−1(0.30,1) 0.1046 [0.004,0.21] 0.0987 [0.004,0.20] 0.0985 [0.004,0.21]

σε8 Γ−1(0.30,1) 0.1091 [0.005,0.21] 0.0974 [0.003,0.21] 0.0956 [0.004,0.21]

logMarg. Likelihood -275.8665 -278.3282 -267.7775

Table 3. Posterior Estimates: Taylor rule with news shocks. Note: The Table reports

mean posterior estimates, along with 2.5% and 97.5% percentiles. We ran 1,500,000 MH draws,

discarding the first 40% as initial burn-in.
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Param. Prior Distr. Posterior Distributions (EE Learning)

Uniform prior Gamma Prior Three Gains m̄ = 1

IS & PC
σ Γ(1.50,0.75) 0.3088 [0.18,0.46] 0.3387 [0.21,0.50] 0.3274 [0.16,0.52] 0.3174 [0.20,0.47]

α B(0.66,0.1) 0.8092 [0.73,0.91] 0.7991 [0.72,0.87] 0.7859 [0.69,0.88] 0.7866 [0.71,0.87]

Taylor Rule
ρ B(0.7,0.2) 0.9024 [0.85,0.95] 0.9044 [0.86,0.95] 0.9025 [0.85,0.95] 0.9025 [0.86,0.95]

χπ N(1.5,0.25) 1.2991 [0.89,1.78] 1.3272 [0.96,1.81] 1.3110 [0.96,1.75] 1.3096 [0.93,1.73]

χx N(0.1,0.05) 0.1374 [0.05,0.22] 0.1550 [0.07,0.25] 0.1376 [0.05,0.21] 0.1461 [0.07,0.23]

Myopia
m̄ varies 0.9382 [0.89,0.98] 0.9437 [0.90,0.99] 0.8799 [0.79,0.94] 1

Learning
ḡ B(0.025,0.01) 0.0049 [0.002,0.009] 0.0050 [0.002,0.009] — 0.0056 [0.003,0.009]

ḡx " — — 0.0059 [0.003,0.011] —
ḡπ " — — 0.0370 [0.024,0.049] —
ḡi " — — 0.0198 [0.007,0.038] —

Shocks
ρr B(0.5,0.2) 0.2146 [0.09,0.37] 0.2236 [0.09,0.36] 0.2824 [0.13,0.47] 0.1776 [0.07,0.31]

ρu B(0.5,0.2) 0.0625 [0.01,0.14] 0.0589 [0.01,0.14] 0.2218 [0.06,0.40] 0.0485 [0.09,0.12]

σr Γ−1(0.30,1) 2.7524 [1.71,4.37] 2.4694 [1.61,3.68] 2.6819 [1.60,5.07] 2.6773 [1.75,3.97]

σu Γ−1(0.30,1) 0.2606 [0.23,0.29] 0.2605[0.23,0.29] 0.2624 [0.24,0.29] 0.2617 [0.24,0.29]

σε Γ−1(0.30,1) 0.2343 [0.21,0.26] 0.2335 [0.21,0.26] 0.2346 [0.21,0.26] 0.2343 [0.21,0.26]

logMarg. Likelihood -268.7747 -267.9884 -266.2732 -270.4209

Table 4. Posterior Estimates: Specification with Euler-equation learning under
different priors for m̄, different gain coefficients for different variables, and for no
cognitive discounting (m̄ = 1).
Note: The Table reports mean posterior estimates, along with 2.5% and 97.5% percentiles.



BEHAVIORAL NEW KEYNESIAN MODELS 25

0 10 20 30 40 50 60 70 80

Horizon of Anticipated Shock

0

10

20

30

40

50

60

In
fl
a

ti
o

n
 R

e
s
p

o
n

s
e

0 10 20 30 40 50 60 70 80

Horizon of Anticipated Shock

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fl
a

ti
o

n
 R

e
s
p

o
n

s
e

Figure 1. Impact of Forward Guidance shock on current inflation.

Note: The Figure shows the response of inflation at time 0 to an expansion-
ary anticipated interest rate shock happening T periods into the future (with
horizons ranging from T = 0 to T = 80). The left panel displays the response in the
case of m̄ fixed at 1 (benchmark NK model with full rationality). The right panel
shows the response when m̄ is equal to the estimated posterior mean (m̄ = 0.416).
All the remaining parameters are set at the posterior mean values reported in Table
1.
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Impulse Response of Output Gap to Unanticipated Monetary Policy Shock
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Figure 2. Impulse response functions of output gap to monetary policy shocks.

Note: The figure shows impulse responses for the model under the three ex-
pectation formation specifications, compared with those from a VAR. The solid red
line denotes the response under EE learning; the dotted orange line denotes the
response under IH learning; the dashed green line denotes the response under RE.
The dashed blue line shows the corresponding impulse response in a VAR estimated
on the same observable variables (output gap, inflation, Federal funds rate).


