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Abstract

This paper develops an econometric framework for estimating the effect of the built environ-

ment on transportation mode choice and usage when a large fraction of the population under

study is nonlicensed. We use a multivariate ordinal outcomes model with a binary selection com-

ponent to allow for (1) heterogeneity in built environment effects and (2) indirect effects urban

form has on mode usage via license choice. Our exposition focuses on the joint modeling of cor-

related and discrete outcomes (binary and ordinal), strategizing with identification restrictions

and nonidentification, and the efficient estimation of model parameters. The current analysis is

Bayesian in large part because estimation via Markov chain Monte Carlo (MCMC) simulation

is more practical than maximizing a likelihood function consisting of tens of thousands of high-

dimensional integrals. We present an efficient estimation algorithm for our model and discuss a

way to sample latent data from the truncated multivariate normal distribution in a computa-

tionally efficient manner. A separate contribution this paper makes to the urban/transportation

economics literature is the cross entropy index for land use imbalance, which we propose as a

replacement to the entropy index for land use mix/balance. Using individual/household-level

data from the 5th Nationwide Person Trip Survey (NPTS), we investigate whether the built

environment is a policy-relevant determinant of travel behavior in the Japanese elderly. Effects

are found to be nonzero but modest at best. Our results and conclusions are broadly consistent

with those based on the United States.

1 Introduction

We consider in this paper the problem of estimating the effect of the built environment on

transportation mode choice and usage when a large fraction of the population under study does

not have the option to drive. We address in particular two important ways in which a mode usage

model could be misspecified in this context: (1) assuming that built environment effects are the

same for those who can and cannot legally drive, and (2) treating the choice to be licensed as
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exogenous. We present an econometric framework to overcome these misspecification concerns and

apply it to travel diary data to study whether the transportation habits of the Japanese elderly

can be shaped using the tools of urban planning. To motivate our model, we begin by elaborating

on how (1) and (2) could lead to incorrect inference.

Previous studies have found that an increase in density leads to more nonmotorized travel and

less driving (Bento et al., 2005; Leck, 2006; Parady et al., 2015). These two effects seem highly

plausible because jointly, they appeal to the notion of a substitution effect: all else held constant,

improving accessibility to goods and services results in people opting to walk or bike instead of

driving. Of course, if this were true, then densification should have a different effect on a person

who cannot drive. If those who cannot drive make up a large portion of the population of interest,

then failing to distinguish the density effect between the nonlicensed and licensed groups may lead

to a serious case of confounding. This is shown in Figure 1. In the left pane, the licensed far

outnumber the unlicensed, resulting in a line of best fit that resembles the former’s conditional

expectation function (CEF). Confounding is inconsequential here insofar as the average effect is

concerned. If the two groups are similar in size, however, then confounding can be severe as shown

in the right pane.

Figure 1: Confounding Effects

One possible solution to the problem of confounding is to fit two models, one for each group, so

that built environment effects are estimated separately. Fitting two models also allows for different

unobserved substitution patterns in the error term, and furthermore, renders trivial the task of

excluding driving as a feasible transportation mode option for those not licensed. The issue with

this strategy is that it treat license choice as exogenous. To see why this is problematic, suppose

that improving accessibility to rail leads to less driving by drivers and also fewer drivers overall.

Fitting a model for each group may reveal the former effect but not the latter.
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To address these misspecification concerns, we build a multivariate ordinal outcomes model

with a binary selection mechanism to estimate the effect of urban form on transportation mode

choice and usage. A graphical representation of our model is given in Figure 2. This figure shows

that, in the first stage, individuals select into either the nonlicensed group or the licensed group.

This decision is observed for all units in the sample. In the second stage, individuals decide on

how much of each available mode option to use. Available mode options are walking/biking, public

transit, getting a ride, and for those who can do so legally, driving. Mode usage is measured on

a three-bin ordinal scale. This is done for practical and theoretical reasons, as we will explain

later. A key feature of our model is that mode usage is modeled jointly. Correlation patterns not

captured by the included covariates appear in the covariance matrix of the error vector.

Figure 2: Multivariate Ordinal Outcomes Model with a Binary Selection Mechanism

Driver’s License

Walking/Biking
Public Transit
Getting a Ride

—

Walking/Biking
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Nonlicensed Licensed

Despite its intuitive appeal and innocuous appearance, the econometric modeling of the pro-

posed model is not straightforward: license outcome is binary whereas mode usage are ordinal, all

outcomes are discrete and correlated, the likelihood function is comprised of many high-dimensional

integrals, and the modeling of counterfactuals yields unidentified parameters. Fortunately, the

Bayesian paradigm offers practical solutions to all of these problems. Our estimation strategy

relies on those of Albert and Chib (1993), Chib (2007), and Chib et al. (2009).

Empirically, our econometric model is motivated by growing concerns for the future of road

safety in Japan, where babyboomers will reach the age of 75+ by 2025 (the so-called 2025 problem).

A report by the National Police Agency Transportation Bureau (NPATB) in Japan found that in

2017, the average number of fatal accidents involving drivers age 75+ was double that of drivers

under the age of 75. It also found that the number of individuals 75+ with driver’s licenses doubled

in the last decade (NPATB, 2018). The ultimate goal of this paper is to determine whether urban

planning can help ensure a high traffic safety standard in Japan in the face of the 2025 problem.

A separate contribution we make to the urban/transportation economics literature is the cross

entropy index for measuring land use imbalance. The literature has pointed out the many problems

with the entropy index, which numerous studies have used to measure land use mix/balance. In

this paper, we argue that if a reference distribution is available, a natural alternative to the entropy

index is the cross entropy index. We do this by showing that the entropy and cross entropy indices

are elegantly linked: If the reference distribution is the uniform distribution, then the entropy index
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is a valid measure of land use balance, and furthermore, balance and imbalance sum to unity.

The remainder of this paper is organized as follows: Section 2 elaborates on the proposed econo-

metric model with emphasis on strategizing with identification restrictions and nonidentification.

MCMC estimation is discussed in Section 3. The cross entropy index and data are covered in

Sections 4 and 5, respectively. Results are given in Section 6, and Section 7 concludes.

2 Model

The econometric model represented graphically by Figure 2 contains eight equations: a selection

equation, three mode usage equations for the nonlicensed group, and four mode usage equations

for the licensed group. Following the latent variables framework of Albert and Chib (1993), we

have for sample unit i ∈ {1, . . . , n} :

Selection Mechanism - License : zi1 = x′i1β1 + εi1 (1)

Nonlicensed - Walking/Biking : zi2 = x′i2β2 + εi2 (2)

Nonlicensed - Public Transit : zi3 = x′i3β3 + εi3 (3)

Nonlicensed - Riding : zi4 = x′i4β4 + εi4 (4)

Licensed - Walking/Biking : zi5 = x′i5β5 + εi5 (5)

Licensed - Public Transit : zi6 = x′i6β6 + εi6 (6)

Licensed - Riding : zi7 = x′i7β7 + εi7 (7)

Licensed - Driving : zi8 = x′i8β8 + εi8, (8)

where, for equation j ∈ {1, . . . , 8}, xij is a vector of covariates, βj is a vector of coefficients, and

εij is an error term. Let N and L denote the nonlicensed and licensed groups, respectively. Due

to the nature of the data generating process, the latent data (zi5, zi6, zi7, zi8) is missing for i ∈ N .
Likewise, (zi2, zi3, zi4) is missing for i ∈ L.

The non-missing latent data vectors ziN = (zi1, zi2, zi3, zi4) and ziL = (zi1, zi5, zi6, zi7, zi8)

relate to their discrete observed counterparts yiN = (yi1, yi2, yi3, yi4) and yiL = (yi1, yi5, yi6, yi7, yi8)

through the link functions

yi1 = 1{zi1 > 0} and yij = 1{zij > 0}+ 1{zij > 1} for j > 1. (9)

Here, 1{·} is the indicator function which equals one when its argument is true and zero otherwise.

The link functions in (9) imply that yi1 ∈ {0, 1} is binary, yij ∈ {0, 1, 2} for j > 1 is ordinal, and

every cutpoint is set to either zero or one.

Fixing every cutpoint identifies Equations (2) through (8), freeing up all but the top-left corner

of the error vector covariance matrix (Nandram and Chen, 1996). Although restricted covariance

matrices are harder to deal with than unrestricted covariance matrices, the restriction here actually

simplifies both the specification and estimation of the model. To see why, suppose that the error
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vector εi = (εi1, εi2, εi3, εi4, εi5, εi6, εi7, εi8)
′ has the normal distribution N(0,Ω), where the restricted

covariance matrix Ω is given by

Ω =



1 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17 Ω18

Ω21 Ω22 Ω23 Ω24 · · · ·
Ω31 Ω32 Ω33 Ω34 · · · ·
Ω41 Ω42 Ω43 Ω44 · · · ·
Ω51 · · · Ω55 Ω56 Ω57 Ω58

Ω61 · · · Ω65 Ω66 Ω67 Ω68

Ω71 · · · Ω75 Ω76 Ω77 Ω78

Ω81 · · · Ω85 Ω86 Ω87 Ω88


.

The “1” in the top-left corner is the usual scaling restriction for the binary probit model, and the

dots “ · ” represent unidentified parameters. Following Chib (2007), we do not model unidentified

covariance terms. This is different from assuming that the unidentified covariance terms are zero,

nor does it mean that the data is uninformative about the unidentified parameters (see Koop

and Poirier (1997) and Poirier and Tobias (2003) for a discussion on the topic). “Ignoring” the

unidentified terms is convenient because the identified portion of Ω can be partitioned into ΩN

and ΩL, where

ΩN =


1 Ω12 Ω13 Ω14

Ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44

 and ΩL =


1 Ω15 Ω16 Ω17 Ω18

Ω51 Ω55 Ω56 Ω57 Ω58

Ω61 Ω65 Ω66 Ω67 Ω68

Ω71 Ω75 Ω76 Ω77 Ω78

Ω81 Ω85 Ω86 Ω87 Ω88

.

The sole overlap between ΩN and ΩL is Ω11, which is already set to one. The scaling restriction

simplifies the estimation of the covariance matrix by making it so that the identified terms in

Ω update using data from either N or L and not both. For ease of specification, we work with

{ΩN ,ΩL} instead of Ω. Group-specific error vectors can now be defined as εiN = (εi1, εi2, εi3, εi4)
′ ∼

N(0,ΩN ) and εiL = (εi1, εi5, εi6, εi7, εi8)
′ ∼ N(0,ΩL). There are several ways to deal with covariance

matrices that have a single on-diagonal restriction; see McCulloch et al. (2000), Chan and Jeliazkov

(2009), and Chib et al. (2009). This paper uses Chib et al. (2009) as it is more efficient than

McCulloch et al. (2000) and easier to implement than Chan and Jeliazkov (2009).

As a final note, specification and estimation can be simplified in the way described above as

long as mode usage is measured on an ordinal scale with at least three bins. The number of bins

may vary across modes and groups. The benefit to using three bins, however, is that the cutpoints

need not be sampled (Nandram and Chen, 1996; Jeliazkov et al., 2008).
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2.1 Likelihood Function

Let β = (β′1,β
′
2,β

′
3,β

′
4,β

′
5,β

′
6,β

′
7,β

′
8)
′ denote the coefficient vector. The selection matrices

SN =


I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

 and SL =


I 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I


select those βj ’s in the coefficient vector pertaining to each group so that SNβ = (β′1,β

′
2,β

′
3,β

′
4)
′

and SLβ = (β′1,β
′
5,β

′
6,β

′
7,β

′
8)
′. Data matrices are in seemingly unrelated regression (SUR) form:

XiN =


x′i1 0 0 0

0 x′i2 0 0

0 0 x′i3 0

0 0 0 x′i4

 and XiL =


x′i1 0 0 0 0

0 x′i5 0 0 0

0 0 x′i6 0 0

0 0 0 x′i7 0

0 0 0 0 x′i8

.

Let g ∈ {N ,L}, NN = |N |, and NL = |L|. Define the vectors and matrices

zg =


z1g
...

zNgg

, Xg =


X1g

...

XNgg

, and εg =


ε1g
...

εNgg

.
The latent data generating process is given by

zg = XgSgβ + εg ∼ N(XgSgβ, INg ⊗Ωg),

where “⊗” is the Kronecker product.

For notational ease and faster runtimes, we also make use of the matrix normal representation

of the latent data generating process: Let vec−1p,q(·) denote the inverse of the vectorization function

vec(·) that takes a column vector as its input and outputs a p×q matrix. Let Jg denote the number

of equations that pertain to group g so that JN = 4 and JL = 5. Define the matrices

Z ′g = vec−1Jg ,Ng
(zg), M ′

g = vec−1Jg ,Ng
(XgSgβ), and E′g = vec−1Jg ,Ng

(εg).

Then

Zg = Mg +Eg ∼MNNg ,Jg(Mg, INg ⊗Ωg),

where MN denotes the matrix normal distribution.

Regions of truncation are given by BiN = Bi1×Bi2×Bi3×Bi4 and BiL = Bi1×Bi5×Bi6×Bi7×Bi8,
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where

Bi1 =

(−∞, 0] if yi1 = 0

(0,∞) if yi1 = 1
and Bij =


(−∞, 0] if yij = 0

(0, 1] if yij = 1

(1,∞) if yij = 2

for j > 1.

Let θ = {β,ΩN ,ΩL} denote the set of identified model parameters, and let Bg be the collection of

truncation regions for all individuals in group g. The data-augmented likelihood is given by

f(y, z|θ) =
∏
g

1{zg ∈ Bg}fN
(
zg
∣∣XgSgβ, INg ⊗Ωg

)
,

where y and z are the observed data and the non-missing latent data, respectively. Note that, be-

cause the likelihood is not augmented with missing latent data, it is not a complete-data likelihood.

2.2 Prior Distribution

The model is completed by specifying a prior distribution over θ. Let β, ΩN and ΩL be

independent a priori. As per convention, the coefficient vector has a normal prior: β ∼ N(b0,B0).

We follow Chib et al. (2009) in specifying a prior for Ωg: Partition Ωg as

Ωg =

[
1 Ωg12

Ωg21 Ωg22

]

and let Ωg22·1 = Ωg22 − Ωg21Ωg12. Note that the Jacobian of the one-to-one transformation

{Ωg21,Ωg22} → {Ωg21,Ωg22·1} is 1. Let Qg be a positive definite matrix of the same size as Ωg.

We induce a prior for Ωg by specifying the following prior over the set of transformed parameters:

Ωg22·1 ∼ IW (Qg22·1, νg) and (Ωg21|Ωg22·1) ∼ N(Qg21Q
−1
g11,Ωg22·1Q

−1
g11).

Our prior is given by

π(θ) = fN (β|b0,B0)
∏
g

fN

(
Ωg21

∣∣∣Qg21Q
−1
g11,Ωg22·1Q

−1
g11

)
fIW (Ωg22·1|Qg22·1, νg).

3 Estimation

Putting together the data-augmented likelihood and prior, we get the data-augmented posterior

π(θ, z|y) ∝ f(y, z|θ)π(θ).

Estimation and inference is facilitated via posterior Gibbs sampling (Gelfand and Smith, 1990).

Our Gibbs estimation algorithm can be summarized in the following way:
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Gibbs Sampling Algorithm

In each MCMC iteration:

1. Sample β ∼ (β|Z,θ \ β)

2. For g ∈ {N ,L} :

(a) Sample Ωg22·1 ∼ (Ωg22·1|Zg,β)

(b) Sample Ωg21 ∼ (Ωg21|Zg,β,Ωg22·1)

(c) Construct Ωg from Ωg22·1 and Ωg21

3. For each i ∈ N ∪ L :

(a) For each j ∈ {1, 2, 3, 4} for i ∈ N and j ∈ {1, 5, 6, 7, 8} for i ∈ L :

i. Sample zij ∼ (zij |yij , zig \ zij ,β,Ωg)

Note the following: First, following Chib et al. (2009), counterfactuals are marginalized out of

the sampler. Collapsing the Gibbs sampler in this way simplifies prior inputs, reduces storage costs

as well as computational demands, and improves mixing (Liu, 1994; Chib, 2007; Li, 2011). Second,

covariance matrices are sampled in a single block, which improves the mixing of the MCMC chain.

Third, latent data is sampled within three nested for-loops. The outer, middle, and inner loops

correspond to the MCMC iteration, sample unit, and equation, respectively. This type of triple

for-loop setup is common in the Bayesian analysis of multivariate discrete data, and is slow to

implement. We describe a way to vectorize out the middle for-loop in subsection 3.3 to cut code

run time. Implementation details for our Gibbs sampler are given below.

3.1 Sampling β

The posterior full conditional distribution for β is N(b,B), where

b = B

(
B−10 b0 +

∑
g

S′gX
′
gvec(Ω−1g Z

′
g)

)
and B =

(
B−10 +

∑
g

S′gX
′
g(INg ⊗Ω−1g )XgSg

)−1
.

3.2 Sampling Ωg

Let Rg = Qg +E′gEg. Further let Rg22·1 = Rg22 −Rg21Rg12/Rg11, where

Rg =

[
Rg11 Rg12

Rg21 Rg22

]
.

To simulate Ωg, draw Ωg22·1 from IW (Rg22·1, νg + ng) and then Ωg21 fromN(Rg21R
−1
g11,Ωg22·1R

−1
g11).

Recover Ωg using the inverse transform

Ωg =

[
1 Ωg12

Ωg21 Ωg22·1 + Ωg21Ωg12

]
.
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3.3 Sampling z

Let µigj·\j and Ωgj·\j denote the conditional mean and conditional variance of zij . The non-

missing latent data z is generated from truncated univariate conditional normal distributions:

1. For i ∈ N ,

i. Sample (zi1|yi1, ziN \ zi1,β,ΩN ) ∼ TNBi1(µiN1·234,ΩN1·234)

ii. Sample (zi2|yi2, ziN \ zi2,β,ΩN ) ∼ TNBi2(µiN2·134,ΩN2·134)

iii. Sample (zi3|yi3, ziN \ zi3,β,ΩN ) ∼ TNBi3(µiN3·124,ΩN3·124)

iv. Sample (zi4|yi4, ziN \ zi4,β,ΩN ) ∼ TNBi4(µiN4·123,ΩN4·123)

2. For i ∈ L,

i. Sample (zi1|yi1, ziL \ zi1,β,ΩL) ∼ TNBi1(µiL1·5678,ΩL1·5678)

ii. Sample (zi5|yi5, ziL \ zi5,β,ΩL) ∼ TNBi5(µiL5·1678,ΩL5·1678)

iii. Sample (zi6|yi6, ziL \ zi6,β,ΩL) ∼ TNBi6(µiL6·1578,ΩL6·1578)

iv. Sample (zi7|yi7, ziL \ zi7,β,ΩL) ∼ TNBi7(µiL7·1568,ΩL7·1568)

v. Sample (zi8|yi8, ziL \ zi8,β,ΩL) ∼ TNBi8(µiL8·1567,ΩL8·1567)

Sampling the latent data using a triple for-loop is slow, especially when the sample size and the

number of equations are both large. To cut runtime, we vectorize out the middle for-loop using

the following multivariate truncated normal sampling technique. This technique requires code that

efficiently generates a column vector of inid (independent, not identically distributed) univariate

truncated normals. Our code uses a modified version of Robert (1995) to sample from truncation

regions that are deep in the tails of the normal distribution. Let x ∼ TN[a,b]

(
µ,σ2

)
denote a

column vector of inid univariate truncated normal draws, where a, b, µ, and σ2 are lower bound,

upper bound, mean, and variance vectors, respectively, such that xi
inid∼ TN[ai,bi](µi, σ

2
i ).

Let Zgj denote the jth column of Zg. Let Zg\j denote Zg without its jth column. Define Mgj

and Mg\j accordingly. Let Ωgjj be the jjth element of Ωg, Ωg\jj be the jth column of Ωg omitting

the jth row, Ωgj\j be the jth row of Ωg omitting the jth column, and Ωg\j\j be Ωg with the jth

row and jth column omitted. Let Ωgjj·\j = Ωgjj−Ωgj\jΩ
−1
g\j\jΩg\jj . By the property of the matrix

normal distribution we have that

(
Zgj

∣∣Zg\j ,β,Ωg

)
∼MNNg ,1

(
Mgj +

(
Zg\j −Mg\j

)
Ω−1g\j\jΩg\jj , INgΩgjj·\j

)
,

which is a column vector of inid univariate normal distributions. Let Bgj be the set of equation j

truncation regions for all individuals in group g. The latent data zigj for all sample units i can be

drawn at once using

(
Zgj

∣∣Ygj ,Zg\j ,β,Ωg

)
∼ TNBgj

(
Mgj +

(
Zg\j −Mg\j

)
Ω−1g\j\jΩg\jj , ιNgΩgjj·\j

)
,

where ιNg is the Ng × 1 vector of ones.
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4 Cross Entropy Index for Land Use Imbalance

In this section, we introduce the cross entropy index for land use imbalance and recommend

it as an alternative to the entropy index for land use mix/balance. Along with density, land

use mix/balance is a popular urban landscape measure of accessibility to goods and services. It

is typically associated with the notion of entropy from information theory, which, for a random

variable X with finite support X and probability mass function p, is given by

H(p) = −
∑
x∈X

p(x)lnp(x). (10)

This formula can be traced back to Shannon and Weaver (1963) in the field of communication,

who relate their work to Boltzmann’s H-theorem from statistical mechanics. Cervero (1989) was

the first in the area of transportation studies to use Equation (10) to measure land use integration.

This was done by setting X to the set of all possible land uses in a given area and p(x) to the

proportion of land in said area devoted to use x ∈ X . The entropy index H∗(p) = H(p)/ln(|X |) in

popular use today is due to Kockelman (1997), who proposed standardizing H to H∗ so that H∗

lies between 0 and 1, where H∗ = 1 represents optimal mix/balance.

The entropy index, while popular, has three known issues: (i) it is not a valid measure of

land use integration; (ii) it prescribes the discrete uniform distribution, u(x) = 1
|X | , as the optimal

distribution of land uses over X ; and (iii) it is symmetric with respect to land use types (Kockelman,

1997; Mitchell Hess et al., 2001; Song et al., 2013). To see why the entropy index is not a valid

measure of land use integration, consider two square cities, city A and city B, whose land areas are

allocated to residential and commercial uses as shown in Figure 3. Clearly, city B has better land

use mix than city A. The entropy index value is 1 for both cities, however, indicating that the two

are equally (and also maximally) mixed. Evidently, the entropy index is not a measure of land use

integration. Some authors attempt to rectify this problem by referring to the entropy index as a

measure of land use balance rather than land use mix. Unless there is good reason to believe that

the optimal distribution of land uses is the discrete uniform distribution, however, it is not a valid

measure of balance either.
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Figure 3

City A City B

To understand the land use symmetry problem, suppose that there are two other cities C and

D whose land areas are split 60%/30%/10% and 10%/30%/60%, respectively, between commercial,

residential, and recreational use, in that order. One would expect city C to have better balance

than city D; yet, they generate the same entropy index value. This is because land uses are treated

symmetrically, i.e., land use labels can be switched around without affecting the value of the index.

Existing solutions to the aforementioned validity and land use symmetry problems involve

modifying the entropy index so that balance is measured relative to some reference distribution;

see, for example, Kockelman (1997) and Song et al. (2013). In the remainder of this section, we

demonstrate that if a reference distribution is available, the natural solution should be to abandon

balance and entropy altogether and to instead measure land use imbalance using cross entropy.

The cross entropy of probability mass function p relative to the reference distribution q is

D(p||q) =
∑
x∈X

p(x)ln
p(x)

q(x)
. (11)

Also known as relative entropy and Kullback-Leibler (KL) divergence, cross entropy has many uses

in the fields of information theory and statistics. Its purpose here is to measure land use imbalance.

As before, let p(x) denote the proportion of land area devoted to use x ∈ X . Let q(x) denote the

reference or optimal counterpart to p(x). Then, Equation (11) quantifies the discrepancy between

the actual and ideal land use distributions. Perfect balance is achieved when there is no imbalance,

i.e., D(p||q) = 0, which occurs at p = q. When p 6= q, there is imbalance, and D(p||q) takes a

positive value. To match the entropy index H∗, we refer to D∗(p||q) = D(p||q)/ln(|X |) as the cross
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entropy index.

We believe that the cross entropy index is the natural alternative to the entropy index because

the two can be linked elegantly in the following fashion: For any pmf q over X , we have

D∗(p||q) = −
∑
x∈X

p(x)lnq(x)

ln(|X |)
−H∗(p).

Now suppose that q is the discrete uniform distribution, u, as prescribed by the entropy index.

Then, the entropy index H∗ is a valid measure of balance, and the above expression simplifies to

D∗(p||u) = 1−H∗(p). (12)

In other words, balance and imbalance sum to unity. Equation (12) shows that the uniform ideal

q ∼ u implies p ∼ u achieves perfect balance, H∗(p) = 1, and zero imbalance, D∗(p||u) = 0.

Figure 4: Comparison of Reference Distributions

The cross entropy index requires a choice for q. The go-to reference distribution in the literature

is the land use distribution for the greater region, such as that of the state/prefecture or country

under study. Note that the reference distribution may vary from one place to another; for example,

reference distributions can be region-specific to incorporate regional variation in the optimal land

use distribution. For our application, we set the reference distribution to the country-level distri-

bution. Figure 4 shows the reference distributions for the cross entropy index (left) and the entropy

index (right). We proxy land use proportions with the proportion of the working population in

twenty industries (see the next section for a list of these industries). A scatterplot comparing

the cross entropy index D∗ to the entropy index H∗ for every city in Japan is given in Figure 5.

Although we can visually verify that the two are inversely related, there is substantial variability
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around this relationship.

Figure 5: Entropy Index vs. Cross Entropy Index

5 Data

To study the transportation habits of the Japanese elderly, we collect individual and household-

level data from the 5th Nationwide Person Trip Survey (NPTS), which was carried out by the Min-

istry of Land, Infrastructure, Transport and Tourism (MLIT) in 2010. The study surveyed 35,000

households from 70 cities (see Table 1 for a list of surveyed cities). Members from participating

households kept a travel diary for one “typical” day, either a midweek day (Tuesday, Wednesday,

Thursday) or a Sunday in a two-day weekend, in either October or November (MLIT, 2012). The

travel diary and household survey can be found in MLIT (2012).

We restrict our sample to participants between the ages of 65 and 100, which yields a sample

of size n = 25,743. Data from the 4th NPTS was used to study the relationship between the built

environment and non-work trip frequency in Parady et al. (2015). City-level built environment

measures are constructed using national census and geographic information system (GIS) data.
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Table 1: Cities Surveyed in the 5th Nationwide Person Trip Survey

Group Cities

Three Major
Metropolitan Areas

Central
Saitama, Chiba, Tokyo, Yokohama,
Kawasaki, Nagoya, Kyoto, Osaka, Kobe

Peripheral 1
Toride, Tokorozawa, Matsudo, Inagi,
Sakai, Toyonaka, Nara

Peripheral 2

Ome, Odawara, Gifu, Toyohashi,
Kasugai, Tsushima, Tokai, Yokkaichi,
Kameyama, Omihachiman, Uji,
Izumisano, Akashi

Regional Urban Area I
(Central City Pop. ≥ 1M)

Central
Sapporo, Sendai, Hiroshima, Kitakyushu,
Fukuoka

Peripheral
Otaru, Chitose, Shiogama, Kure, Otake,
Dazaifu

Regional Urban Area II
(Central City Pop. ≥ 400K)

Central
Utsunomiya, Kanazawa, Shizuoka,
Matsuyama, Kumamoto, Kagoshima

Peripheral
Oyabe, Komatsu, Iwata, Soja, Isahaya,
Usuki

Regional Urban Area III
(Central City Pop. < 400K)

Central
Hirosaki, Morioka, Koriyama, Matsue,
Tokushima, Kochi

Peripheral
Takasaki, Yamanashi, Kainan, Yasugi,
Nangoku, Urasoe

Regional Area
Yuzawa, Ina, Joetsu, Nagato, Imabari,
Hitoyoshi

Adapted from MLIT (2007).

5.1 Dependent Variables

Dependent variables include a binary indicator for whether or not a person is licensed and

three/four ordinal mode usage measures. Mode usage measures are generated from the travel diary

portion of the NPTS. Available transportation modes are walking/biking, public transit, getting

a ride, and for those who can do so legally, driving. Since a trip may involve multiple modes of

travel, we follow MLIT’s reporting guidelines in prioritizing public transit over the use of a private

vehicle, which in turn has priority over nonmotorized travel (MLIT, 2012).

Whereas Parady et al. (2015) uses count models to measure usage, this paper uses a three-bin

ordinal scale, with zero representing no trips, one representing one or two trips, and two rep-

resenting three or more trips. We do this for several reasons. First, multivariate ordinal data

models are more flexible than traditional multivariate count data models. The former can ac-

commodate positive correlations, negative correlations, over-dispersion, and under-dispersion. In

comparison, the multivariate Poisson model requires correlations to be positive, and the multivari-
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ate Poisson-lognormal model, while capable of handling negative correlations, assumes that the

data is overdispersed (Jeliazkov et al., 2008). Second, because a typical day’s worth of travelling

is split between three to four transportation mode categories, the vast majority of trip counts are

zero, and the non-zero counts tend to be small. Count data models are not suited to deal with this

kind of data. Lastly, as mentioned in Section 2, the three-bin ordinal scale is convenient for the

purposes of model specification and estimation.

Table 2: Usage by Travel Mode and License Status

Walking/Biking

No Trips 1 or 2 Trips 3+ Trips Total

Nonlicensed 7,994 (31.05%) 2,089 (8.11%) 788 (3.06%) 10,871 (42.23%)
Licensed 12,220 (47.47%) 1,997 (7.76%) 655 (2.54%) 14,872 (57.77%)

Total 20,214 (78.52%) 4,086 (15.87%) 1,443 (5.61%) 25,743 (100.00%)

Transit

No Trips 1 or 2 Trips 3+ Trips Total

Nonlicensed 10,189 (39.58%) 599 (2.33%) 83 (0.32%) 10,871 (42.23%)
Licensed 14,312 (55.60%) 491 (1.91%) 69 (0.27%) 14,872 (57.77%)

Total 24,501 (95.18%) 1,090 (4.23%) 152 (0.59%) 25,743 (100.00%)

Getting a Ride

No Trips 1 or 2 Trips 3+ Trips Total

Nonlicensed 8,558 (33.24%) 1,624 (6.31%) 689 (2.68%) 10,871 (42.23%)
Licensed 13,187 (51.23%) 1,214 (4.72%) 471 (1.83%) 14,872 (57.77%)

Total 21,745 (84.47%) 2,838 (11.02%) 1,160 (4.51%) 25,743 (100.00%)

Drive

No Trips 1 or 2 Trips 3+ Trips Total

Nonlicensed 10,871 (42.23%) 0 (0.00%) 0 (0.00%) 10,871 (42.23%)
Licensed 6,662 (25.88%) 4,614 (17.92%) 3,596 (13.97%) 14,872 (57.77%)

Total 17,533 (68.11%) 4,614 (17.92%) 3,596 (13.97%) 25,743 (100.00%)

Table 2 tabulates mode usage by travel mode and license status, and offers two important

insights: First, nearly half (42.23%) of the sample cannot drive, yet driving is the most popular

mode option (it has the smallest no trip count). Second, those who can drive report less usage on

all non-driving modes than those who cannot drive. This suggests that driving is a substitute to
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all other modes. Since mode usage is modeled jointly, any substitution effects unaccounted for by

the included covariates is captured by the covariance matrix.

5.2 Independent Variables

Individual and household-level controls are generated from the household survey portion of the

NPTS. These are age, sex, employment status, household size, homeownership status, vehicle count,

and an indicator for the household having a bicycle. An indicator for weekday is also included in

the mode use equations. Unlike the National Household Travel Survey (NHTS), the NPTS does

not collect information on household income and household members’ education levels.

Built environment features considered here are population density, land use imbalance, and

accessibility to public transit. Measures for the first two are constructed using data from the 2010

national census. The proportion of land devoted to different uses is proxied by the proportion of

the working population in twenty industries. These industries are: (1) agriculture and forestry; (2)

fisheries; (3) mining and quarrying of stone and gravel; (4) construction; (5) manufacturing; (6)

electricity, gas, heat suppy and water; (7) information and communications; (8) transport and postal

activities; (9) wholesale and retail trade; (10) finance and insurance; (11) real estate and goods

rental and leasing; (12) scientific research, professional and technical services; (13) accommodations,

eating and drinking services; (14) living-related and personal services and amusement services; (15)

education, learning support; (16) medical, health care and welfare; (17) compound services; (18)

services, N.E.C.; (19) public services; and (20) miscellaneous.

Table 3: Summary Statistics

Variable Mean S.D. Min Max

Individual-level variables

Age 73.93 7.04 65 100
Male 0.51 — — —
Unemployed 0.58 — — —
Weekday 0.48 — — —

Household-level variables

Household Size 2.75 1.35 1 7
Homeowner 0.94 — — —
Vehicle Count 1.58 1.12 0 5
Bicycle 0.64 — — —

City-level variables

Population Density (per m2) 1.29 1.55 0.06 7.90
Land Use Imbalance 0.08 0.06 0.02 0.26
Bus Stops (per km2) 1.83 1.38 0.26 7.27
Train Stations (per km2 × 10) 0.85 0.93 0 4.24

Accessibility to transit is measured as the number of bus stops and train stations in the city
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normalized by city area. Data on transit facilities can be found on the National Land Numeri-

cal Information Download Service website. Summary statistics for our independent variables are

reported in Table 3.

6 Results

Regression results are based on an uninformative prior that uses the following hyperparameters:

b0 = 0× ι, B0 = 100× I, Qg = I for g ∈ {N ,L}, νN = 6, and νL = 7. The MCMC chain ran for

10,000 iterations after a burn-in of 2,000 draws. Priors and posteriors are given in the Appendix.

6.1 Results for β

Posterior means and standard deviations for the coefficient vector β are given in Table 4.

The coefficient estimates themselves are neither interpretable nor comparable with other estimates

due to the discrete/non-linear nature of the data. Effects that are decisively positive or negative

(posterior sign probabilities of at least 0.975) are indicated by a star (?). We comment on the

direction of effects here and on policy-relevance in the next subsection.

For the elderly who cannot drive, density is positively associated with transit use and negatively

associated with getting rides. For the elderly who can drive, densification leads to more walking

and biking, more transit use, and less driving. Private vehicle use in general goes down (riding for

those who cannot drive and driving for those who can), and the use of other transport modes go up.

This suggests that the effect of density on mode choice and usage is facilitated by a substitution

mechanism that involves the use of a private vehicle.

As for land use balance, we find that better balance (less imbalance) leads to more nonmotorized

travel for both groups and also more transit use by the licensed group. In constrast with density,

we find no evidence suggesting that substitution effects are at play here.

Bus accessibility is found to have either no effect or an indeterministic effect everywhere. In

comparison, increased train accessibility leads to less driving by license holders and fewer license

holders overall.
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Table 4: Posterior Means and Standard Deviations for β

Nonlicensed Licensed

License Walking/Biking Transit Getting a Ride Walking/Biking Transit Getting a Ride Driving

Age -0.105? -0.056? -0.045? -0.045? -0.011? -0.027? -0.009 -0.014?

(0.002) (0.004) (0.008) (0.005) (0.005) (0.006) (0.006) (0.003)

Male 1.885? 0.563? 0.441? -0.047 -0.058 0.090 -0.902? 0.354?

(0.023) (0.075) (0.149) (0.100) (0.076) (0.089) (0.097) (0.043)

Unemployed -0.178? -0.205? -0.245? -0.184? 0.099? -0.178? -0.062 -0.144?

(0.022) (0.032) (0.048) (0.039) (0.031) (0.048) (0.042) (0.023)

Weekday 0.271? 0.155? -0.020 0.026 0.108? -0.221? 0.329?

(0.029) (0.041) (0.035) (0.029) (0.044) (0.040) (0.022)

Household Size -0.469? -0.063? -0.012 -0.171? 0.045? 0.048 -0.004 -0.085?

(0.011) (0.021) (0.038) (0.027) (0.022) (0.029) (0.029) (0.014)

Homeowner 0.348? 0.111? 0.187? 0.445? 0.020 0.067 0.059 0.027
(0.046) (0.056) (0.078) (0.077) (0.072) (0.101) (0.100) (0.054)

Vehicle Count 0.809? -0.014 -0.204? 0.306? -0.208? -0.274? 0.001 0.106?

(0.015) (0.033) (0.063) (0.041) (0.031) (0.041) (0.041) (0.018)

Bicycle -0.262? 0.402? -0.096 -0.172? 0.375? -0.072 0.025 0.013
(0.023) (0.035) (0.050) (0.040) (0.033) (0.048) (0.042) (0.023)

Population Density (per m2) 0.025 0.019 0.074? -0.086? 0.052? 0.072? -0.001 -0.042?

(0.014) (0.020) (0.025) (0.026) (0.020) (0.026) (0.029) (0.016)

Land Use Imbalance -0.143 -1.602? 0.333 0.524 -1.267? -2.473? -0.528 0.154
(0.193) (0.276) (0.406) (0.316) (0.278) (0.540) (0.380) (0.200)

Bus Stops (per km2) 0.012 -0.003 0.021 0.026 -0.021 0.046 0.000 -0.021
(0.013) (0.018) (0.023) (0.025) (0.019) (0.025) (0.028) (0.015)

Train Stations (per km2 × 10) -0.066? -0.008 -0.006 0.008 0.041 0.097? 0.006 -0.048?

(0.021) (0.030) (0.041) (0.037) (0.029) (0.041) (0.040) (0.022)

Star (?) indicates posterior sign probabilities that are > 0.975.
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6.2 Policy Simulation Results

Regression tables for generalized linear models (GLMs) are useful in that they convey informa-

tion about statistical significance and the direction of effects. They are not in themselves useful

for policymaking purposes, however, as they provide no information on effect sizes (Brownstone,

2008). In this section, we discuss two popular covariate effect estimation methods, the partial effect

at the average (PEA) and the average partial effect (APE). We then describe a third estimation

method that overcomes the shortcomings of the first two. The third method is used to determine

whether urban form effect sizes are sufficiently large to be considered policy relevant.

To motivate the discussion, suppose that there is an exogenous urban form shock S such that

S : xpre
i → xpost

i (i.e., S transforms the pre-shock covariate vector xpre
i into its post-shock form

xpost
i ) for all i. Note that S can represent the built environment changing in numerous ways at

once (e.g., population density doubling and land use imbalance halving at the same time). Further

suppose we want to estimate the overall effect that S has on the probability of being licensed

(yi1 = 1). Given β1, the effect of S for subject i is

(Effecti|β1) = P (yi1 = 1|β1,x
post
i1 )− P (yi1 = 1|β1,x

pre
i1 ) = Φ(xpost′

i1 β1)− Φ(xpre′
i1 β1). (13)

Note that, because the effect of S depends on the covariates, it varies from person to person.

Let xpre
1 and xpost

1 denote the sample means of xpre
i1 and xpost

i1 , respectively, and let β̂1 be a

point estimate for β1. One way to find an overall effect based on Equation (13) is to compute the

partial effect at the average:

Êffect = Φ

(
xpost
1

′
β̂1

)
− Φ

(
xpre
1

′
β̂1

)
.

The problem with finding the effect at the average is that the average covariate vector typically cor-

responds to an uninteresting, unrepresentative, and/or nonexistent individual. A better estimator

for the overall effect is the average partial effect, which takes the average of individual effects:

Êffect = Φ(xpost′
1 β̂1)− Φ(xpre′

1 β̂1).

Neither PEA nor APE account for estimation uncertainty, however, and this can yield misleading

effect estimates (Jeliazkov and Vossmeyer, 2016). Moreover, statistical software packages typi-

cally do not automatically give confidence intervals for the APE and PEA estimators, and policy

relevance cannot be judged on point estimates alone.

To account for both data variability and estimation uncertainty, we follow Fang (2008) and

Brownstone and Fang (2014) in examining the posterior distribution of the average treatment

effect (ATE), where the average is taken with respect to the sample:

(Effect|β1) =
1

N

N∑
i=1

(Effecti|β1) = Φ(xpost′
1 β1)− Φ(xpre′

1 β1).
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The ATE formula is similar to that of APE, the difference being that the former is evaluated at

every β1 drawn from the posterior distribution π(β1|y). The non-Bayesian analog to this is to take

draws of β̂1 from its sampling distribution and plug them into the APE formula.

Extending the ATE approach to the multivariate case requires only straightforward modifica-

tions. For example, suppose we are interested in studying the effect of S on the joint probability

of not having a driver’s license (yi1 = 0) and taking zero nonmotorized trips (yi2 = 0). Then, given

(β1,β2,Ω12,Ω22), the effect of S for subject i is

(Effecti|β1,β2,Ω12,Ω22) = P (yi1 = yi2 = 0|β1,β2,Ω12,Ω22,x
post
i1 ,xpost

i2 )

− P (yi1 = yi2 = 0|β1,β2,Ω12,Ω22,x
pre
i1 ,x

pre
i2 )

= Φ

([
0

0

]∣∣∣∣∣
[
xpost′
i1 β1

xpost′
i2 β2

]
,

[
1 Ω12

Ω21 Ω22

])
− Φ

([
0

0

]∣∣∣∣∣
[
xpre′
i1 β1

xpre′
i2 β2

]
,

[
1 Ω12

Ω21 Ω22

])
.

We can obtain the posterior distribution for the ATE by plugging draws of (β1,β2,Ω12,Ω22) from

its posterior π(β1,β2,Ω12,Ω22|y) into the expression above.

The primary disadvantage with the method we employ is that it is computationally demanding

relative to the PEA and APE methods. To cut code runtime, we use a thinned posterior sample

of the model parameters.

Table 5 reports probability changes following the simultaneous doubling of population den-

sity and the halving of land use imbalance. Effect sizes are estimated precisely and found to be

very small. This suggests that urban planning measures have virtually no effect at changing the

transportation habits of the Japanese elderly. Our results and conclusions are broadly consistent

with those based on the United States (Bento et al., 2005; Fang, 2008; Ewing and Cervero, 2010;

Brownstone and Fang, 2014).

Table 5: Effect of Simultaneously Doubling Density and Halving Land Use Imbalance

Walking/Biking No Trips 1 or 2 Trips 3+ Trips

Nonlicensed -0.015 (0.004) 0.003 (0.002) 0.003 (0.002)
Licensed -0.009 (0.005) 0.011 (0.003) 0.007 (0.002)

Transit

Nonlicensed -0.013 (0.005) 0.004 (0.002) 0.001 (0.001)
Licensed -0.003 (0.005) 0.008 (0.002) 0.003 (0.001)

Getting a Ride

Nonlicensed 0.004 (0.004) -0.007 (0.002) -0.005 (0.001)
Licensed 0.006 (0.005) 0.002 (0.002) 0.001 (0.001)

Driving

Nonlicensed — — —
Licensed 0.015 (0.005) -0.001 (0.002) -0.006 (0.003)

Posterior standard deviations given in parentheses.
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6.3 Results for Ω

A benefit of modeling mode usage jointly rather than separately is that substitution effects not

accounted for by the covariates in the model appear in Ω. To study how mode usage relate to each

other in the error term, we find the percentage of posterior draws that are negative (indicating

substitution) for select covariance terms. These are reported in Table 6. Our findings are as

follows: Controlling for covariates, nonmotorized travel and getting rides are viewed as substitutes.

The elderly who drive view transit as complementary to both nonmotorized travel and getting

rides. Driving is also viewed as a substitute to all other mode options even after accounting for the

included covariates.

Table 6: Posterior Probability of Ωjk < 0 in Ω

Nonlicensed

Transit Ride

Nonmotorized 38% 100%

Transit 26%

Licensed

Transit Ride Drive

Nonmotorized 0% 98% 100%

Transit 0% 100%

Ride 100%

7 Conclusion

This paper presents an econometric framework to study the effects of the built environment

on transportation mode choice and usage when a large fraction of the population under study is

nonlicensed. We use a multivariate ordinal outcomes model with a binary selection mechanism

to allow for both heterogeneous and indirect urban form effects. Emphasis was placed on the

joint modeling of correlated discrete outcomes, strategizing with identification restrictions and the

lack of identification, and the efficient estimation of model parameters. We also discussed the

computationally efficient sampling of truncated multivariate normal latent data.

This paper introduces the cross entropy index for land use imbalance and recommends it as an

alternative to the entropy index for land use mix/balance. Whereas entropy imposes the assumption

that the optimal land use distribution is given by the uniform distribution, cross entropy gives the

researcher the ability to choose a reference distribution. We show that the two indices are connected

in that if the uniform distribution is optimal, then the entropy index is a valid measure of balance,

and furthermore balance and imbalance sum to unity. The topic of reference distribution selection

is not pursued here and is open to future research.

We apply our model on a sample of Japanese elderly to investigate whether urban planning tools

can be used to improve traffic safety conditions in Japan. Although we are successful at identifying

heterogeneous and indirect urban form effects, ultimately we find that built environment effects are

too small to warrant attention from policymakers. Our conclusion is similar to those based on the

United States, where built environment effects are reportedly nonzero but economically irrelevant.
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8 Appendix

Figure 6: Posteriors for Equation 1 (License)

Posterior given by solid line, prior by dashed line.

Figure 7: Posteriors for Equation 2 (Nonlicensed - Walking/Biking)

Posterior given by solid line, prior by dashed line.
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Figure 8: Posteriors for Equation 3 (Nonlicensed - Transit)

Posterior given by solid line, prior by dashed line.

Figure 9: Posteriors for Equation 4 (Nonlicensed - Ride)

Posterior given by solid line, prior by dashed line.
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Figure 10: Posteriors for Equation 5 (Licensed - Walking/Biking)

Posterior given by solid line, prior by dashed line.

Figure 11: Posteriors for Equation 6 (Licensed - Transit)

Posterior given by solid line, prior by dashed line.
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Figure 12: Posteriors for Equation 7 (Licensed - Ride)

Posterior given by solid line, prior by dashed line.

Figure 13: Posteriors for Equation 8 (Licensed - Drive)

Posterior given by solid line, prior by dashed line.
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Figure 14: Posteriors for Implied Correlation Matrix (Nonlicensed)

Posterior given by solid line, prior by dashed line.
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Figure 15: Posteriors for Implied Correlation Matrix (Licensed)

Posterior given by solid line, prior by dashed line.
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