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1 Introduction

Modern monetary theory and �nancial economics formalize asset trades in the context of decentralized mar-

kets with explicit game-theoretic foundations (e.g., Du¢ e et al., 2005; Lagos and Wright, 2005). These

models replace the elusive Walrasian auctioneer by a market structure with two core components: a technol-

ogy to form pairwise meetings and a strategic or axiomatic mechanism to determine prices and trade sizes.

This paper focuses on the latter: the negotiation of asset prices and trade sizes in pairwise meetings.

The need to revisit the bargaining foundations of models of decentralized asset markets follows from

recent methodological advances allowing agents to hold unrestricted asset portfolios. Going back to Diamond

(1982), the search-theoretic literature has placed stark restrictions on individual asset inventories, typically

a 2 f0; 1g. As a result, in versions of the model with bargaining (e.g., Shi, 1995; Trejos and Wright, 1995;

Du¢ e et al., 2005), the only item to negotiate in pairwise meetings � the agenda of the negotiation � is

the price of an indivisible asset in terms of a divisible commodity.1 Because models with a 2 f0; 1g cannot

tackle many important questions in monetary economics and �nance, recent incarnations (surveyed in Lagos

et al., 2017) allow for unrestricted portfolios of divisible assets, a 2 RJ+ with J 2 N.

A key conceptual di¤erence between the bargaining problems when a 2 f0; 1g and a 2 RJ+ is that the

agenda of the negotiation can no longer be left implicit in the latter case, i.e., there is a large set of possible

agendas for a given portfolio when a 2 RJ+. Any ordered partition of a 2 RJ+ constitutes an agenda, where

the elements of this partition correspond to items to be negotiated sequentially. For instance, agents can sell

their whole portfolio at once, as a large block, or they can partition their portfolio into smaller bundles of

same or di¤erent sizes to be added to the negotiation table one after another. When the portfolio is composed

of multiple assets, J � 2, those assets can be traded in di¤erent orders. The possibility of negotiating asset

sales according to di¤erent agendas raises several questions regarding trading strategies and price formation

in decentralized asset markets. Do agendas matter when agents have perfect foresight and information is

complete? What is the optimal strategy to partition the portfolio, e.g., should the portfolio be divided into

smaller parts or negotiated as a whole? Does the outcome depend on the side (buyer or seller) choosing

the agenda of the negotiation? What are the (implicit) agendas of standard bargaining solutions, such as

the Nash or Kalai solutions? Does the order according to which distinct assets are sold matter for the

distribution of rates of return?
1A thorough treatment of the axiomatic and strategic solutions for such bargaining problems is provided by Osborne and

Rubinstein (1990). In Osborne and Rubinstein (1990) agents trade an indivisible consumption good and pay with transferable
utility. The interpretation is reversed in Shi (1995) and Trejos and Wright (1995) where the indivisible good is �at money and
agents negotiate over a divisible consumption good. In Du¢ e et al. (2005) the indivisible good is a consol and agents pay with
transferable utility.
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Our contribution is to introduce a new and generalized approach to bargaining over portfolios of assets

in models of decentralized asset market with the notion of agenda at the forefront, under both strategic and

axiomatic foundations. This approach, which encompasses existing bargaining solutions such as Nash (1950)

and Kalai (1977), assumes that agents sell their assets sequentially according to a pre-speci�ed agenda. We

start with a simple agenda by partitioning a portfolio of homogeneous assets into N bundles of equal size.

The extensive-form bargaining game is composed of N rounds. In each round, one asset bundle is up for

negotiation. For simplicity, one player makes an ultimatum o¤er, and the identity of the proposer alternates

across rounds. This alternating-ultimatum-o¤er bargaining game is nonstationary since the amount of assets

left to negotiate decreases over time. We show the existence and uniqueness of a subgame-perfect equilibrium

(SPE) and characterize equilibrium payo¤s through a system of di¤erence equations. We consider the limit

as N goes to in�nity, which we call the gradual solution. We show it gives a simple and intuitive relationship

between asset prices and trade sizes, and it has properties that make it tractable for general equilibrium

analysis, including monotonicity and concavity of payo¤s in trade size. We generalize the game by studying

an agenda composed of an uneven partition of the asset holdings, thereby generating asymmetric gradual

solutions.

In order to relate the gradual solution to the Nash solution, we extend the game so that agents play an

alternating-o¤er game with risk of breakdown, as in Rubinstein (1982), in each of the N rounds. In contrast

to our original game, agents alternate making o¤ers within each round, and not simply across rounds. For all

N � +1, the path of agreements is a sequence of Nash solutions with endogenous disagreement points. The

outcome of the negotiation varies with N , even though agents have perfect foresight, and it coincides with

the Nash solution and the gradual solution in the limiting cases N = 1 and N = +1, respectively. Hence,

the gradual solution is remarkably robust to the protocol in each round provided that the symmetry between

players is preserved. If we let asset owners choose N in order to maximize their utility, then N = +1, i.e.,

they bargain gradually, one in�nitesimal unit of asset at a time.2

Our description of the negotiation encompasses over-the-counter (OTC) bargaining games in the �nance

literature. We reinterpret our model as one where agents trade an illiquid asset, for which they have

idiosyncratic valuations, in exchange for a liquid asset that is commonly valued (e.g., �at money). So far,

we considered agendas where agents trade their liquid assets gradually over time. Alternatively, if agents

negotiate the illiquid asset one in�nitesimal unit at a time, then the outcome coincides with the proportional

solution of Kalai (1977). Remarkably, while the Kalai solution is not scale invariant, the gradual bargaining

2 Interestingly, the gradual aspect of asset trades is a key characteristic of many trading practices observed on �nancial
markets. For example, broker-dealers are known to break large orders (�block orders") into smaller ones and execute them over
the span of several days (see, e.g., Chan and Lakonishok, 1995).
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solution is ordinal (O�Neill et al., 2004).

We check the robustness of our solution by adopting the axiomatic approach of O�Neill et al. (2004) that

abstracts from the details of the extensive-form game. The agenda, which is part of the de�nition of the

bargaining problem, is formalized as a collection of expanding bargaining sets. We choose the agenda to be

consistent with the assumption that agents add assets on the negotiating table gradually over time. The

solution of O�Neill et al. (2004) is a path that shares three axioms with the Nash (1950) solution, Pareto

optimality, scale invariance, and symmetry, and satis�es two new axioms, directional continuity and time

consistency. The unique solution satisfying these �ve axioms coincides with the SPE of the alternating-

ultimatum-o¤er bargaining game when N = +1.

The second part of the paper incorporates bargaining solutions with an agenda into a general equilibrium

model of decentralized asset markets with endogenous portfolios. We use the fact that an agenda has

an explicit time dimension (the items of the agenda are negotiated sequentially) to introduce a new asset

characteristic �negotiability.3 Asset negotiability is de�ned as the amount of time required for the sale of each

unit of the asset to be �nalized, e.g., each asset added to the negotiation table needs to be authenticated and

ownership rights take time to transfer.4 Hence, negotiability depends on the characteristics of an asset, e.g.,

tangibility and authenticability, as well as the technology to transfer asset ownership, e.g., by physical transfer

of the asset if it is tangible, through a physical or electronic ledger, or through a blockchain technology.

We make this negotiability relevant by assuming that the time agents have to complete their negotiation

is stochastic and exponentially distributed. On the positive side, the general equilibrium spread between

the rate of return of the asset and the rate of time preference is the product of four components: the search

friction, the bargaining power, the negotiability friction, and marginal gains from trade. Thus, bargaining

a¤ects asset prices through both bargaining powers and delays to reach and con�rm an agreement.

On the normative side, if the asset is scarce, then the decentralized choice of asset negotiability (when

it is endogenous) is too low relative to the planner�s choice, even if asset owners have all the bargaining

power, because of a pecuniary externality. Assuming the negotiability constraint never binds (because the

time horizon of the negotiation is su¢ ciently large), the equilibrium under Nash bargaining (N = 1) features

asset misallocation: a fraction of the asset supply ends up being held by agents with no liquidity needs. In

3The concept of negotiability dates back to the 17th century and referred to institutional arrangements aiming at enhancing
liquidity by �centralizing all rights to the underlying asset in a single physical document, [...] reducing the costs a prospective
purchaser incurs in acquiring [...] information about the asset" (Mann, 1996). The concept of blockchains - immutable,
decentralized ledgers that can record ownership and transfer of intangible assets - can be seen as a digital incarnation of the
original idea of negotiability.

4According to Du¢ e (2012) search and matching frictions encompass not only �delays associated with reaching an awareness
of trading opportunities" but also delays due to �arranging �nancing and meeting suitable legal restrictions, negotiating trades,
executing trades, and so on." For evidence on these delays, see, e.g., Saunders et al. (2002) and Pagnotta and Philippon (2018).
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contrast, under gradual bargaining (N = +1), the �rst best is implemented as long as the asset supply

is su¢ ciently abundant. This �nding is especially stark in an OTC version of the model with �at money:

under Nash bargaining the OTC market shuts down and the equilibrium achieves its worst allocation whereas

under gradual bargaining the OTC market is active and the equilibrium achieves �rst best.

Finally, we extend our environment to allow for any arbitrary number of assets. All assets, except �at

money, generate the same stream of dividends but di¤er by their negotiability. For instance, more complex

assets take more time to be negotiated than simpler ones. If we let asset owners choose the order according

to which assets are negotiated, then our model generates an endogenous pecking order: assets that are

more negotiable are put on the negotiating table before the less negotiable ones. In equilibrium, the most

negotiable assets have lower rates of return and higher velocities. Hence, our model explains rate-of-return

di¤erences of seemingly identical assets.

We conclude the paper by considering two applications that will showcase the relevance of our generalized

approach to bargaining to address standard puzzles in monetary and �nancial economics, e.g., the rate-of-

return-dominance puzzle and the nominal exchange rate indeterminacy. The �rst application has money and

interest-bearing government bonds and studies the e¤ects of open-market operations (OMOs). Our model

predicts that an open market sale of bonds raises the nominal interest rate and reduces output because �at

money is replaced by less-negotiable bonds. Our second application is a dual-currency economy where the

supplies of the two currencies grow at di¤erent rates and currencies di¤er in their negotiabilities. While it has

been argued that the exchange rate is indeterminate in a world with multiple �at currencies (e.g., Kareken

and Wallace, 1981), we show that the exchange rate is determinate once one takes into account di¤erences

in negotiability: the currency with higher negotiability appreciates vis-a-vis the high-return currency if the

frequency of trades increases, if the consumers�bargaining power increases, or if the time horizon of the

negotiation shortens.

Related literature

Models of decentralized markets adopting a strategic approach to the bargaining problem in pairwise meetings

were pioneered by Rubinstein and Wolinsky (1985). Bargaining with an agenda composed of multiple issues

was �rst studied by Fershtman (1990). The axiomatic formulation with a continuous agenda used in this

paper was developed by O�Neill et al. (2004). To the best of our knowledge, we provide its �rst application.5

We show how to identify the agenda of the negotiation in the context of decentralized asset market models,

5An early application can be found in the working paper of Rocheteau and Waller (2005) in the context of a pure currency
economy. The bargaining solutions of Zhu and Wallace (2007) and Rocheteau and Nosal (2017) can also be interpreted as
negotiations with an agenda, where the agenda bundles together assets of the same type (e.g., money holdings as one item and
bond holdings as a separate item). These solutions, however, lack axiomatic or strategic foundations.
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we propose di¤erent ways to endogenize it, and we provide strategic foundations.

While O�Neill et al. (2004) are silent about the strategic foundations of the solution, an earlier working

paper by Wiener and Winter (1998) conjectures that a bargaining game with alternating o¤ers should

generate the same outcome. We formalize this conjecture in our context with two extensive-form games: an

alternating-ultimatum-o¤er bargaining game and a "repeated" Rubinstein game. Our second game is related

to the Stole and Zwiebel (1996) game in the literature on intra-�rm wage bargaining. See Brugemann et al.

(2018) for a recent re-examination of this game. In the Stole-Zwiebel game a �rm with a strictly concave

production function bargains sequentially with N workers. In each negotiation the wage is determined

according to a Rubinstein game with alternating o¤ers and exogenous risk of breakdown. While we describe

sequential negotiations within a bilateral match, we could reinterpret our game as one where the asset owner

bargains sequentially with multiple buyers provided that the disutility associated with the payment is linear.

There are di¤erences. In the intra-�rm bargaining literature workers sell an indivisible unit of labor, whereas

in models of asset markets agents sell divisible assets. Moreover, we let agents choose both the quantity of

assets to sell and the number of rounds of the negotiation. The structure of the game is also di¤erent. In our

game, if agents fail to reach an agreement in one round, they move to the next round, but the agreements

of earlier rounds are preserved. In the Stole-Zwiebel game, all previous agreements are erased.

The extensive-form bargaining games we study are not stationary. Coles and Wright (1998) describe

the strategic negotiation of indivisible units of money in continuous time in the non-stationary monetary

equilibria of the model of Shi (1995) and Trejos and Wright (1995).

The concept of agenda has a natural time dimension since di¤erent parts of the portfolio are sold sequen-

tially (see, e.g., O�Neill et al., 2004). Tsoy (2018) formalizes bargaining delays in the absence of common

knowledge. He studies an alternating-o¤er bargaining game in OTC markets with a 2 f0; 1g where agents

have private values that are a¢ liated. At the limit, when values become perfectly correlated, there is a class

of equilibria converging to the Nash division of the surplus but agreements are reached with delays.

One of our results shows that agents prefer to bargain gradually, one in�nitesimal unit of asset at a time.

Relatedly, Gerardi and Maestri (2017) formalize the bargaining of a divisible asset under private information

and show that gradual trading emerges endogenously. There is also a literature on the optimal execution of

large asset orders, e.g. Bertsimas and Lo (1998).

The general equilibrium framework into which we incorporate bargaining games with an agenda corre-

sponds to a version of the Lagos and Wright (2005) model with divisible Lucas trees, as in Geromichalos et

al. (2007) and Lagos (2010).6 We also consider a variant where agents trade assets because of idiosyncratic

6 In those models, the asset owner has all the bargaining power. Rocheteau and Wright (2013) adopt the proportional
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valuations, as in Du¢ e et al. (2005). See also Lagos and Rocheteau (2009) and Uslu (2018) with unrestricted

portfolios; Geromichalos and Herrenbrueck (2016a), Lagos and Zhang (2018), and Wright et al. (2018), with

asset trades �nanced with money.7 Our paper clari�es the role of di¤erent assumptions regarding the bar-

gaining protocol in those models, e.g., Lagos and Zhang (2018) use Nash while Wright et al. (2018) use

Kalai.

Our extension with multiple assets contributes to the literature on asset price puzzles in markets with

search frictions, e.g., Vayanos and Weill (2008) based on increasing-returns-to-scale matching technologies;

Rocheteau (2011), Li et al. (2012) and Hu (2013) based on informational asymmetries; Lagos (2013) based on

self-ful�lling beliefs in the presence of assets�extrinsic characteristics; and Geromichalos and Herrenbrueck

(2016b) based on matching and bargaining frictions di¤erentials across the secondary markets where each

asset is traded. The application to open-market operations is related to Rocheteau et al. (2018) and

references therein. The application to the determination of the exchange rate in a two-currency economy is

related to Zhang (2014) and Gomis-Porqueras et al. (2017). Related to our notion of negotiability, Chiu and

Koeppl (2018) study the optimal design of the transfer of asset ownership using blockchain technologies.

2 Environment

There is an in�nite (countable) number of periods, where each period is divided into two stages. In the �rst

stage, there is a decentralized market, labeled DM, where agents trade goods and assets in pairwise meetings

over some time interval [0; �� ] � R+. The second stage, labeled CM (for centralized market), features a

centralized Walrasian market. There is one good in each stage and we take the CM good as numeraire.

There is a continuum of agents with measure two evenly divided between two types, called consumers and

producers. An agent�s type corresponds to his role in the �rst stage, where only consumers wish to consume

the DM good while only producers have the technology to produce it. Throughout most of the paper we

think of consumers as natural asset holders who receive liquidity shocks while producers are potential buyers

of those assets. During the DM, a fraction � of consumers and producers are matched bilaterally.

Consumers�preferences are represented by the period utility function, u(y) � h, where y is total DM

consumption and h is the disutility of producing h units of numeraire. Producers�preferences are represented

by ��(y) + c, where y corresponds to total production of the DM good and c is the consumption of the

numeraire. We assume u0(y) > 0, u00(y) < 0, u0(0) = +1, u(0) = �(0) = �0(0) = 0, �0(y) > 0, �00(y) > 0,

and �(�y) = u(�y) for some �y > 0. Let y� denote the solution to u0(y�) = �0(y�). All agents share the same

bargaining solution, endogenize participation, and consider non-stationary equilibria. Lester et al. (2012) introduce a costly
acceptability problem. Rocheteau (2011) and Li et al. (2012) add informational asymmetries.

7See Trejos and Wright (2016) for a model that nests Shi (1995), Trejos and Wright (1995) and Du¢ e et al. (2005).
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discount factor across periods, � � (1 + �)�1 2 (0; 1).

Example 1 (Interpretation of the DM as an OTC market.) At the end of each period, a unit

measure of agents, called sellers, receive an equal endowment of one-period-lived real assets, 
, that pay o¤

at the end of the following period. The payo¤ to a seller from holding ! units of assets is f`(!). There is

a distinct unit measure of agents, called buyers, who do not receive any asset in the CM but who value it

according to the payo¤ function fh(!) where f 0h(!) > f 0`(!) > 0.
8 Assets can only be reallocated in the DM,

interpreted as an OTC market. For this formulation, u(y) � fh(y) and �(y) � f`(
)� f`(
� y).

Agents, who are anonymous, cannot issue private IOUs. This assumption creates a need for liquid assets.

There is an exogenous measure of long-lived Lucas trees indexed on [0; A] that are perfectly durable, storable

at no cost, and non-counterfeitable. For now all trees are identical and a unit measure of trees pays o¤ d > 0

units of numeraire in the CM. We will consider later the case of �at money, d = 0. We denote �t the price

of Lucas trees in terms of the numeraire.

In pairwise meetings the negotiation and transfer of assets take place during a time interval [0; �� ]. The

technology to authenticate and transfer ownership of assets is such that � units of assets can be negotiated

per unit of time. In the �rst part of the paper, � plays no role because the time available for the negotiation,

�� , is assumed to be large. However, in Sections 5, 6, and 7 the constraint imposed by �� becomes relevant.

Before turning to the analysis of the pairwise negotiation we �rst derive some preliminary results that will

be useful to set up the problem. We restrict our attention to stationary equilibria where the price of Lucas

trees is constant at � and hence their gross rate of return is also constant and equal to R = 1+r = (�+d)=�.

We measure a consumer�s asset holdings in the DM in terms of their value in the upcoming CM. More

precisely, a units of asset in the DM are worth z = (� + d)a. The lifetime expected utility of a consumer

(i.e., buyer of DM goods) with wealth z in the CM is

W b(z) = max
z0;h

�
�h+ �V b(z0)

	
s.t. z0 = R (z + h) ; (1)

where z0 are next-period asset holdings, and V b(z0) is the value function at the start of the DM. From (1) the

consumer chooses his production of numeraire and future asset holdings in order to maximize his discounted

continuation value net of the disutility of production. According to the budget constraint, next-period asset

holdings are equal to current asset holdings plus output from production, everything multiplied by the gross

8 In Appendix D we study a version of this model with ex ante identical agents. One can interpret f(!) as a production
function and ! as physical capital, as in Rocheteau and Nosal (2017) or Wright et al. (2018). One can also think of f(!) as
reduced form utility for di¤erent services provided by the asset, e.g., liquidity and hedging services, as in Du¢ e et al. (2005)
and Lagos and Rocheteau (2009).
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rate of return of assets. Substituting h by its expression coming from the budget identity into the objective,

we obtain

W b(z) = z +max
z0�0

�
�z

0

R
+ �V b(z0)

�
: (2)

As is standard, W b is linear in wealth. There is a similar equation de�ning the value function of a producer

(seller of the DM goods), W s(z).

3 Gradual bargaining

We describe a negotiation between a consumer (i.e., buyer of the DM good) holding z > 0 units of assets,

expressed in terms of the numeraire, and a producer (i.e., seller of the DM good) with no asset. For now all

Lucas trees are indistinguishable so that the agenda of the negotiation is simply a partition of the interval

[0; z]. We start with a simple partition of N subsets of equal size, z=N , but we will also consider asymmetric

agendas later on. We �rst propose an extensive-form game and then adopt an axiomatic approach to show

the robustness of the solution.

3.1 The alternating-ultimatum-o¤er bargaining game

The game has N rounds. In each round, the consumer can negotiate at most z=N units of assets for some

DM output. The round-game corresponds to a two-stage ultimatum game: in the �rst stage an o¤er is made;

in the second stage the o¤er is accepted or rejected.9 In order to maintain some symmetry between the two

players (when N is large), the identity of the proposer alternates across rounds. We assume N is even and

the producer is the one making the �rst o¤er. These assumptions will be inconsequential when we consider

the limit as N becomes large. The game tree is represented in Figure 1.

We de�ne � � nz=(�N) as the time at the end of the nth round (in each of the n rounds, z=N assets are

up for negotiation, and each asset takes 1=� units of time to be negotiated.) The utility accumulated by the

consumer up to � is

ub(�) = u [y(�)] +W b [z � p(�)] = u [y(�)]� p(�) + ub0; (3)

where y(�) is the consumer�s cumulative consumption at time � ; p(�) is his cumulative payment with Lucas

trees (expressed in terms of the numeraire), and ub0 = W b(z). The utility accumulated by the producer up

to � is

us(�) = �� [y(�)] + p(�) + us0; (4)

9A feature of our game is that if an o¤er is rejected, the z=N units of assets that are unsold cannot be renegotiated later in
the game. The solution to our game, however, is robust to this feature. See Appendix B.

9



...

Yes

Yes

Yes YesYes Yes

Yes

No

No

No

No No No

No

Consumer

Consumer

ConsumerConsumer ConsumerConsumer

Consumer

Producer

Producer

Producer Producer Producer Producer

Producer

Round #1

Round #3

Round #2

Figure 1: Game tree of the alternating-ultimatum-o¤er game

where us0 = W s(0). Given the feasibility constraint p(�) � �� , we can de�ne a Pareto frontier for each � ,

i.e.,

ub = max
y;p���

�
u (y)� p+ ub0

	
s.t. � � (y) + p+ us0 � us.

These Pareto frontiers play a key role to solve for the SPE of the game by backward induction.

Lemma 1 (Pareto frontiers) The Pareto frontier at time � satis�es H(ub; us; �) = 0 where

H(ub; us; �) =

�
u(y�)� �(y�)� (ub � ub0)� (us � us0) if us � us0 � �� � �(y�)
�� � �[u�1(�� + ub � ub0)]� (us � us0) otherwise

: (5)

The function H is continuously di¤erentiable, increasing in � (strictly so if y < y�), decreasing in ub and

us. Consequently, each Pareto frontier has a negative slope:

@us

@ub

����
H(ub;us;�)=0

=

(
�1 if us � us0 � �� � �(y�)
��0(y)
u0(y) otherwise

The Pareto frontier is linear when y = y�. When y < y�, it is strictly concave.

We call a bargaining round an active round if there is trade. We say that a SPE is simple if in each

active round the consumer o¤ers z=N units of assets, except possibly for the last active round, and active

rounds are followed by inactive rounds (if any).

Proposition 1 (SPE of the alternating-ultimatum-o¤er game.) All SPE of the alternating-ultimatum-

o¤er game share the same �nal payo¤s. If �nal y is less than y�, then the SPE is unique and sim-

ple; otherwise, there is a unique simple SPE. Moreover, in any simple SPE, the intermediate payo¤s,
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f(ubn; usn)gn=1;2;:::;N , converge to the solution,


ub(�); us(�)

�
, to the following di¤erential equations as N

approaches +1:

ub0(�) = �1
2

@H(ub; us; �)=@�

@H(ub; us; �)=@ub
(6)

us0(�) = �1
2

@H(ub; us; �)=@�

@H(ub; us; �)=@us
: (7)

Proposition 1 (proved in Appendix B) establishes that the SPE of the alternating-ultimatum-o¤er game

is essentially unique � any multiplicity when y = y� is due to di¤erences in the timing of asset sales that

are payo¤-irrelevant. When N approaches +1, i.e., bargaining becomes gradual, equilibrium payo¤s are

characterized by the system of di¤erential equations, (6)-(7). The interpretation of this solution is as follows.

An increase in � by one unit expands the bargaining set by @H=@� . The maximum utility gain that the

consumer could enjoy from this expansion is � (@H=@�) =
�
@H=@ub

�
, as illustrated by the horizontal arrow

in Figure 2. According to (6), the consumer enjoys half of this gain. The same holds true for the producer.

By combining (6) and (7), the slope of the gradual agreement path is:

@us

@ub
=
@H(ub; us; �)=@ub

@H(ub; us; �)=@us
: (8)

According to (8), the slope of the gradual bargaining path is equal to the opposite of the slope of the Pareto

frontier.

su

bu

Bargaining
path

Intermediate
agreement

Figure 2: Solution to a gradual bargaining problem

The proof of Proposition 1 consists of two steps: �rst, we characterize the SPE for any (sub)game with

an arbitrary number of rounds, N . In the second part, we establish that the sequence of intermediate payo¤s

of the SPE converges to the solution to the system of di¤erential equations, (6) and (7), as N approaches

11



+1. The intuition goes as follows. Suppose the negotiation enters its last round, N , and the two agents

have agreed upon some intermediate payo¤s (ubN�1; u
s
N�1). The consumer makes the last take-it-or-leave

o¤er, which maximizes his payo¤ by keeping the producer�s payo¤ unchanged at usN�1. Graphically, the �nal

payo¤s are constructed from the intermediate payo¤s by moving horizontally from the lower Pareto frontier,

to which (ubN�1; u
s
N�1) belongs, to the upper Pareto frontier corresponding to an increase in assets of z=N ,

as shown in the left panel of Figure 3.

We now move backward in the game by one round. Suppose that the negotiation enters round N � 1

with some intermediate payo¤s, (ubN�2; u
s
N�2), with the producer making the o¤er. Now, if the consumer

rejects the producer�s o¤er, the negotiation enters its last round and the consumer�s payo¤ is obtained as

before, i.e., by moving horizontally from the lower frontier to the upper frontier. Given the consumer�s

payo¤, the producer�s payo¤ is obtained such that the pair of payo¤s is located on the last Pareto frontier.

Graphically, there is �rst a horizontal move from the initial payo¤, (ubN�2; u
s
N�2), to the next Pareto frontier

that determines the consumer�s terminal payo¤, ubN�1 = ubN , and then a vertical move to the following

frontier that determines the producer�s payo¤, usN , as shown in the right panel of Figure 3. We iterate this

procedure backward until we reach the start of the game with initial payo¤s (ub0; u
s
0).

su su

bu bu

s
Nu 1−

Round N:
Consumer makes an offer

Round N­1:
Producer makes an offer

b
Nu 1−

s
Nu 2−

b
Nu 2−

b
Nu b

Nu

Terminal
payoffsTerminal

payoffs

),( 11
s
N

b
N uu −−

Figure 3: Left panel: o¤er in last round; Right panel: o¤er in (N � 1)th round

Once we have the terminal payo¤s, we use another backward induction to determine the sequence of

intermediate payo¤s. The intermediate payo¤s at the end of the (N �1)th round lie on the (N �1)th frontier

and are obtained by moving horizontally from the N th frontier to the (N � 1)th frontier since the consumer

is making the last o¤er. The intermediate payo¤s on the (N � 2)th frontier are obtained by moving �rst

vertically, from the N th frontier to the (N�1)th frontier, and then horizontally from the (N�1)th frontier to

12



the (N �2)th frontier by using the same reasoning as above. It turns out that the two sequences constructed

above get closer to one another as N becomes large, and, both converge to the gradual bargaining path

according to (8).

3.2 Negotiated price and trade size

We now turn to the implications of the gradual bargaining solution for asset prices and trade sizes. From

the de�nition of H in (5), the solution to the bargaining game, (6)-(7), can be reexpressed as

ub0(�) = �
u0(y)� �0(y)
2�0(y)

(9)

us0(�) = �
u0(y)� �0(y)
2u0(y)

; (10)

if �� < us � us0 + �(y�) and ub0(�) = us0(�) = 0 otherwise. From (9) and (10) the slope of the gradual

bargaining path is @us=@ub = �0(y)=u0(y), which is increasing in y, i.e., it becomes steeper as the negotiation

progresses. The producer�s share in the match surplus increases throughout the negotiation as the gap

between u0(y) and �0(y) shrinks over time.

Proposition 2 (Prices and trade sizes) Along the gradual bargaining path, the price of the asset in

terms of DM goods is

y0(�)

�
=
1

2

0BB@
bid pricez }| {
1

�0(y)
+

ask pricez }| {
1

u0(y)

1CCA for all y < y�: (11)

The overall payment for y units of consumption is

p(y) =

Z y

0

2�0(x)u0(x)

u0(x) + �0(x)
dx: (12)

If z � p(y�) then y = y� and y = p�1(z) otherwise.

According to (11), the negotiated price is the arithmetic average of the bid and ask prices. The bid price

of one unit of asset at time � , i.e., the maximum price in terms of DM goods that the producer is willing

to pay to acquire it, is equal to 1=�0(y). The ask price at time � , i.e., the minimum price in terms of DM

goods that the consumer is willing to accept to give up the asset, is 1=u0(y). The bid price decreases with

y because the producer incurs a convex cost to �nance an additional unit of asset. The ask price increases

with y because the consumer enjoys a decreasing marginal utility in exchange of an additional unit of asset.

So the negotiated price can be non-monotone with the size of the trade. From (12) we can compute the

consumer�s surplus from a trade:

u(y)� p(y) =
Z y

0

u0(x) [u0(x)� �0(x)]
u0(x) + �0(x)

dx; for all y � y�:
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The surplus increases with y, is strictly concave for all y < y�, and is maximum when y = y�. We will

emphasize the importance of the monotonicity of the surplus later when we turn to the general equilibrium.

3.3 Asymmetric agenda

So far the agenda of the negotiation corresponds to a uniform partition of the portfolio, [0; z], where each

asset bundle has the same size, z=N . In the following we modify the agenda to provide a noncooperative

foundation for asymmetric bargaining powers. We still assume that N is even. In each round where the

consumer is making the o¤er, the amount of assets that can be negotiated is 2�z=N where � 2 [0; 1]. In

rounds where the producer is making the o¤er, the amount of assets up for negotiation is 2(1� �)z=N . Note

that � = 1=2 corresponds to the bargaining game studied earlier. We show in Appendix B that the solution

to this bargaining game generalizes (6)-(7) as follows:

ub0(�) = �� @H(u
b; us; �)=@�

@H(ub; us; �)=@ub
(13)

us0(�) = � (1� �) @H(u
b; us; �)=@�

@H(ub; us; �)=@us
; (14)

where � 2 [0; 1] is interpreted as the consumer�s bargaining power.10 By the same reasoning as above, the

DM price of assets evolves according to

y0(�)

�
=

0BB@�
bid pricez }| {
1

�0(y)
+ (1� �)

ask pricez }| {
1

u0(y)

1CCA : (15)

It is now a weighted average of the bid and ask prices where the weights are given by the relative bargaining

powers of the consumer and the producer. From (15) the DM price of the asset is increasing in �. The

payment for y units of DM consumption is

p(y) =

Z y

0

u0 (x) �0(x)

�u0(x) + (1� �)�0(x)dx for all y � y�: (16)

3.4 An axiomatic approach

An axiomatic approach, by abstracting from the details of the bargaining game, provides a sense of the

robustness of our solution.11 The Nash de�nition of a bargaining problem, which does not include the notion

10This solution coincides with the axiomatic solution of Wiener and Winter (1998). One could make the bargaining power a
function of time, � , or output traded, y, without a¤ecting the results signi�cantly.
11As written by Serrano (2008) in his description of the Nash program:

The non-cooperative approach to game theory provides a rich language and develops useful tools to analyze
strategic situations. One clear advantage of the approach is that it is able to model how speci�c details of the
interaction may impact the �nal outcome. One limitation, however, is that its predictions may be highly sensitive
to those details. For this reason it is worth also analyzing more abstract approaches that attempt to obtain
conclusions that are independent of such details. The cooperative approach is one such attempt.
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of agenda, was extended by O�Neill et al. (2004). The agenda takes the form of a family of feasible sets

indexed by time. The di¢ culty is to identify the relevant agenda for the problem at hand. In the context of

our model where agents negotiate gradually the sale of assets, the bargaining problem is de�ned as follows.

De�nition 1 A gradual bargaining problem between a consumer holding z units of asset and a producer is

a collection of Pareto frontiers,


H(ub; us; �) = 0; � 2 [0; z=�]

�
and a pair of disagreement points, (ub0; u

s
0).

A gradual agreement path is a function, o : [0; z] ! R+ � [0; z], that speci�es an allocation (y; p) for all

� 2 [0; z=�] and associated utility levels,


ub(�); us(�)

�
. The gradual solution of O�Neill et al. (2004) is the

unique solution to satisfy �ve axioms: Pareto optimality, scale invariance, symmetry, directional continuity,

and time-consistency. The �rst three axioms are axioms imposed by Nash (1950). The last two axioms are

speci�c to the new de�nition of the bargaining problem. Directional continuity imposes a notion of continuity

for the bargaining path with respect to changes in the agenda. The requirement of time-consistency speci�es

that if the negotiation were to start with the agreement reached at time � as the new disagreement point, then

the bargaining path onwards would be unchanged. The theorem of O�Neill et al. applied to the bargaining

problem above leads to the following result.

Theorem 1 (Ordinal solution of O�Neill et al., 2004) There is a unique solution to the gradual

bargaining problem given by


H(ub; us; �) = 0; � 2 [0; z=�]

�
and it satis�es (6)-(7).

The equilibrium payo¤s of the alternating-ultimatum-o¤er bargaining game coincide with the axiomatic

solution from O�Neill et al. (2004). While scale invariance was imposed as an axiom, the solution exhibits

ordinality endogenously: the solution is covariant with respect to any order-preserving transformation. This

result is noteworthy because Shapley (1969) shows that for standard Nash problems with two players,

no single-valued solution can satisfy Pareto e¢ ciency, symmetry, and ordinality. Finally, if the axiom of

symmetry is dropped, then the generalized ordinal solutions corresponding to the bargaining problem in

De�nition 1 solve (13)-(14).

4 Relation to Nash and Kalai bargaining

We now describe bargaining games with an agenda that admit the two most commonly used bargaining

solutions, namely, the Nash and Kalai solutions, as particular cases. First, we generalize the game of Section

3.1 by adopting the Rubinstein (1982) alternating-o¤er game in each round. The Nash solution corresponds

to the particular case where N = 1 while the gradual solution corresponds to N = +1. In a second part,
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we set up an alternative agenda under which agents negotiate gradually over the DM good (instead of the

liquid assets). We show that this agenda generates the Kalai (1977) solution as N ! +1.

4.1 The repeated Rubinstein game

We generalize the game studied in Section 3.1 so that each round, n 2 f1; :::; Ng, is composed of an in�nite

number of stages during which the two players bargain over z=N units of assets following an alternating-o¤er

protocol as in Rubinstein (1982). The consumer is the �rst proposer if n is odd, and the producer is the

�rst proposer otherwise. The round-game, illustrated in Figure 4, is as follows. In the initial stage, the �rst

proposer makes an o¤er and the other agent either accepts it or rejects it. If the o¤er is accepted, round

n ends and agents move to round n + 1. If the o¤er is rejected then there are two cases. With probability

(1� �n) round n is terminated and the players move to round n+ 1 without having reached an agreement.

With probability �n the negotiation continues and the responder becomes the proposer in the following stage.

We focus on the limit case where �n converges to one, and the order of convergence is from �N to �1.

...

Yes

Yes

No

No

Consumer

Consumer

Consumer

Round #1 ......Round #2 Round #n Round #N

Move to
next round

Move to
next round

Trade and move
 to next round

Trade and move
 to next round

Producer

Producer
][ξ

][ξ

]1[ ξ−

]1[ ξ−

Round game

Figure 4: Game tree with alternating o¤ers in each round

Proposition 3 (Repeated Rubinsten game.) There exists a SPE of the repeated Rubinstein game when

taking limits according to the order �N ! 1, �N�1 ! 1, ..., �1 ! 1, characterized by a sequence of interme-
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diate allocations, f(yn; pn)gNn=0, solution to:

(yn; pn) 2 argmax
y;p

[u(y)� p� u(yn�1) + pn�1] [��(y) + p+ �(yn�1)� pn�1] s.t. p � nz

N
; (17)

for all n 2 f1; :::; Ng with (y0; p0) = (0; 0). As N ! +1 the solution converges to the solution of the

alternating-ultimatum-o¤er game characterized in Proposition 2.

The intermediate allocations in each round, given by (17), maximize the Nash product of agents�surpluses

where the endogenous disagreement points are the intermediate payo¤s of the previous round. The proof (in

Appendix C) is based on backward induction. Consider the last round with some intermediate agreement

(ubN�1; u
s
N�1). The outcome of the Rubinstein game as the risk of breakdown goes to zero corresponds to the

Nash solution with disagreement point (ubN�1; u
s
N�1). Next, consider round N � 2 with intermediate payo¤s

(ubN�2; u
s
N�2). The relevant disagreement points, (~u

b
N�1; ~u

s
N�1), are given by the outcome of the negotiation

in round N � 1 if there is no agreement in round N � 2, i.e., (~ubN�1; ~usN�1) maximizes the Nash product�
~ubN�1 � ubN�2

� �
~usN�1 � usN�2

�
. Given (~ubN�1; ~u

s
N�1), the negotiation in round N � 2, which is forward

looking, determines the �nal payo¤s. As the risk of breakdown vanishes, these payo¤s, (ubN ; u
s
N ), coincide

with the Nash solution, i.e., they maximize
�
ubN � ~ubN�1

� �
usN � ~usN�1

�
. For any given initial condition

(ub0; u
s
0), this iterative procedure pins down the terminal payo¤s. Once terminal payo¤s are determined, we

use a second backward induction to �nd the sequence of intermediate payo¤s. Intermediate payo¤s in round

N�1, (ubN�1; usN�1), correspond to the disagreement points of the Nash solution that generates the terminal

payo¤s, i.e., (ubN�1; u
s
N�1) = (~u

b
N�1; ~u

s
N�1). And so on. The determination of payo¤s is illustrated in Figure

5.

From (17) the intermediate allocations, f(yn; pn)gNn=0, solve:Z yn

yn�1

�0(yn)u
0(x) + u0(yn)�

0(x)

u0(yn) + �0(yn)
dx � z

N
" = " if yn < y�; (18)

pn � pn�1 = min
�
[u(y�)� u(yn�1)] + [�(y�)� �(yn�1)]

2
;
z

N

�
;

with y0 = 0. From (18), when the liquidity constraint, pn � nz=N , binds, then the payment for yn � yn�1

units of DM goods is equal to a weighted sum of the marginal utilities of consumption and the marginal

disutilities of production. If N = 1 then (18) corresponds to symmetric Nash. Summing (18) across n and

taking the limit as N goes to +1 gives the gradual solution.

In the following proposition we let consumers (asset owners) choose the number of rounds of the nego-

tiation, N . The key observation from (18) is that the consumer�s share in the surplus of the nth round,

u0(yn)= [u
0(yn) + �

0(yn)], decreases with yn.
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Figure 5: Computing terminal payo¤s from round N � 2

Proposition 4 (Optimal gradualism) Consumers obtain their highest surplus by negotiating the sale of

their assets one in�nitesimal unit at a time, N = +1.

The agenda underlying the Nash solution (N = 1) is suboptimal from the standpoint of asset owners.

They strictly prefer to sell their assets gradually over time. The consumer gain from bargaining gradually is

p1(y)� p1(y) =
Z y

0

�
�0(y)

u0(y) + �0(y)
� �0(x)

u0(x) + �0(x)

�
[u0(x)� �0(x)] dx;

where pN (y) is the amount of assets in exchange for y units of DM goods if the negotiation takes place in N

rounds. Under Nash bargaining the producer�s share in each increment of the match surplus is constant and

equal to �0(y)= [u0(y) + �0(y)], which is larger than the variable share, �0(x)= [u0(x) + �0(x)] for all x < y,

under gradual bargaining. Intuitively, selling all the assets at once has a negative impact on the consumer�s

surplus share that can be reduced by selling them through small quantities � a form of dynamic price

discrimination.

4.2 Gradual bargaining in OTC markets

In Example 1 of Section 2, we interpret y as an illiquid asset traded over the counter, as in Du¢ e et al.

(2005) and Lagos and Zhang (2018). Agents trade a liquid asset that has a common value for an illiquid

asset that is valued di¤erently by buyers and sellers. Even if we focus on gradual solutions, the agenda of

the negotiation can take two forms: agents can bargain gradually over the liquid asset, as described above,

or they can bargain gradually over the illiquid asset. We now describe the outcome of the latter agenda,
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i.e., agents add the illiquid asset, y, on the negotiation table gradually over time and bargain over the price

of each unit in terms of the liquid asset. In that case each Pareto frontier in the de�nition of the gradual

bargaining problem is indexed by the amount of illiquid asset, �y, that has been up for negotiation at a given

point of time. With no loss in generality we normalize ub0 = us0 = 0.

Lemma 2 (Pareto frontiers when bargaining over DM goods.) For a given asset holding z, the

bargaining problem is a collection of Pareto frontiers,


H(ub; us; �y) = 0; �y 2 [0; y�]

�
where:

H(ub; us; �y) =

�
u(�y)� �(�y)� ub � us if us � z � �(�y)
z � � � u�1

�
ub + z

�
� us otherwise

; (19)

for all us � min
�
u(�y)� �(�y); z � � � u�1(z)

	
.

As long as the DM output to be negotiated is su¢ ciently small relative to the consumer�s real balances,

z � u(�y), then the Pareto frontier is entirely linear (see Figure 6). In contrast, if z < u(�y) then the payment

constraint binds if the producer receives a su¢ ciently large surplus, in which case the Pareto frontier is

strictly concave over some range.

Grad
ual b

arg
ain

ing

path

su

bu

0
*)

,
,

(

=
y

u
u

H

s
b

0
)

,
,

(

1 =
y

u
u

H

s
b

0
)

,
,

(

2 =
y

u
u

H

s
b

Figure 6: Bargaining gradually over DM goods

The alternating-ultimatum-o¤er game associated with this agenda is analogous to the one described in

Section 3.1. The producer can now transfer at most y�=N units of DM goods for some liquid assets in each

round. The transfer of liquid asset is also subject to a feasibility constraint according to which the consumer

cannot transfer more liquid asset than what he holds in a given round (taking into account the assets spent

in earlier rounds). So the game ends when either the N th round has been reached or the liquid assets of the
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consumer have been depleted. The identity of the proposer (the consumer or the producer) alternates across

rounds.

Proposition 5 (Gradual bargaining over DM output) The gradual limit (as N tends to +1) of the

SPE of the alternating-ultimatum-o¤er game where agents bargain gradually over the DM output is such that

the total payment function is

pDM (y) =
1

2
[u(y) + �(y)] ;

and DM output solves pDM (y) = min
�
z; pDM (y�)

	
. It also corresponds to the ordinal solution of O�Neill et

al. (2004) when the agenda is given by (19).

Proposition 5 (whose proof can be found in Appendix B) shows that the payment made by the consumer

is the arithmetic mean of the utility of the consumer and the cost of the producer. As a result, the surplus

is shared equally between the consumer and the producer and the gradual bargaining path is linear, in

accordance with the proportional solution of Kalai (1977).

The proportional solution has been used extensively in the monetary literature since Aruoba et al. (2007)

because of its tractability and strong monotonicity property. However, two types of criticisms have been

formulated against it. First, it is not scale invariant. Second, it does not have strategic foundations in terms

of an extensive form game. While these two criticisms are legitimate in general, Proposition 5 shows that

they are unwarranted in the context of decentralized asset markets under quasi-linear preferences since our

solution is ordinal and has strategic foundations in terms of an alternating-o¤er game.12

We now endogenize the agenda by adding a stage prior to the negotiation where one of the players is

picked at random to choose whether to bargain gradually over the DM good or the asset. We maintain for

now the assumption that there is no constraint on the horizon of the negotiation.

Proposition 6 (Endogenous agenda). Suppose that either the consumer or the producer of the DM good

has to choose the agenda of the negotiation. The consumer chooses to bargain gradually over his holdings of

Lucas trees while the producer chooses to bargain gradually over the DM good.

If the asset owner (the consumer) chooses the agenda of the negotiation, then he bargains gradually over

his asset holdings. In contrast, the producer chooses to bargain gradually over the DM good. In both cases,

each agent wants to sell gradually the commodity or asset he is o¤ering in the negotiation.13

12Dutta (2012) also proposes non-cooperative foundations for the Kalai solution, however not in the spirit of Rubinstein�s
alternating-o¤ers game since players must simultaneously coordinate on an allocation.
13 In Appendix D we use this result to describe a two-sided OTC market where asset trades are intermediated by dealers. We

let investors choose the agenda of the negotiation so that buyers bargaining gradually over the liquid asset while sellers bargain
gradually over the illiquid asset.
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5 Asset prices and negotiability

The second part of the paper studies the general equilibrium implications of the gradual bargaining solutions

for asset prices, allocations, and welfare. We �rst study the pricing of Lucas trees in a New-Monetarist

model with idiosyncratic spending opportunities (e.g., Geromichalos et al., 2007; Lagos, 2010) taking the

negotiability of assets, �, as exogenous. In order to contrast the �ndings under Nash and gradual bargaining,

we also investigate an OTC version of the model with linear payo¤s where agents trade an illiquid short-term

asset with money (as, e.g., Lagos and Zhang, 2018). In the second part we endogenize negotiability as a

costly investment decision.

Agendas have a natural time dimension. In extensive-form games, the di¤erent items of the agenda are

negotiated sequentially at di¤erent points in time. In the axiomatic de�nition of O�Neill et al. (2004), the

agenda is a collection of Pareto frontiers indexed by time. In order for time to matter, we now assume

that the amount of time allocated to the negotiation, �� , is a random variable exponentially distributed with

mean 1=� and realized at the beginning of a match. This assumption captures the idea that agents might

have more or less time to negotiate the sale of their assets. Throughout the section we assume that the

consumer�s bargaining power is � 2 [0; 1].

5.1 Negotiability, asset prices, and welfare

The lifetime expected utility of a consumer bringing z assets to the DM solves

V b(z) = �

Z +1

0

�e���
�
u [y(z; �)] +W b [z � p [y (z; �)]]

	
d� + (1� �)W b(z); (20)

where y(z; �) is the consumer�s consumption and p [y(z; �)] is his sale of Lucas trees in the DM in terms of

numeraire if the time to negotiate is � . According to (20) a consumer meets a producer with probability �,

in which case � is drawn from an exponential distribution. The consumer enjoys y units of DM consumption

in exchange for p units of assets. With probability 1 � � the consumer is unmatched and enters the CM

with z units of asset. Substituting V b(z) with its expression given by (20), the consumer�s choice of asset

holdings solves

max
z�0

�
�sz + �

Z +1

0

�e��� fu [y(z; �)]� p [y(z; �)]g d�
�
; (21)

where s is the spread between the rate of time preference and the real rate on liquid Lucas trees,

s =
�� r
R

� 0: (22)
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We rewrite the portfolio problem, (21), as a choice of DM consumption, taking into account that the payment

function, p(y), is given by (16). It becomes:

max
y2[0;y�]

�
�sp(y) + �

Z y

0

e�
�
� p(x)

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dx

�
: (23)

The second term in the objective function is the consumer�s expected surplus from a DM trade (see the

appendix for the full derivation); note that we can restrict the choice of y to [0; y�] since that term becomes

constant for y > y�. The objective function is continuous and strictly concave for all y 2 (0; y�].

By market clearing,

p(y) �
�
1 + �

�� s

�
Ad, " = " if s > 0, (24)

where we have used that the cum-dividend price of the asset is � + d = (1 + �)d=(� � s). When s > 0,

consumers hold exactly p(y) = (� + d)A. If s = 0, then from (26) y = y�. The total supply of the asset,

(�+ d)A, is larger or equal than p(y�) since assets can also be held as a pure store of value. An equilibrium

can be reduced to a pair (s; y) that solves (23) and (24). We measure social welfare as the sum of surpluses

in pairwise meetings but we do not include the output from Lucas trees, Ad:

W = �

Z y

0

e�
�
� p(x) [u0(x)� �0(x)] dx: (25)

Proposition 7 (Asset prices and welfare.) An equilibrium exists and is unique.

1. If Ad � �p(y�)=(1 + �) then s = 0 and y� is implemented in a fraction e�
�
� p(y

�) of all matches. Social

welfare is independent of Ad but it increases with � and decreases with �.

2. If Ad < �p(y�)=(1 + �) then

s = ��e�
�
� p(y)`(y) > 0; (26)

where `(y) = u0(y)=�0(y)�1, and y� is never implemented. The asset spread, s, decreases with Ad and

� but increases with �. Social welfare increases with Ad and � but decreases with �.

3. Suppose � = 0 and � = 1=2. If Ad � �p(y�)=(1 + �), then the equilibrium under gradual bargaining

implements the �rst best. In contrast, the equilibrium under Nash bargaining never implements the �rst

best, i.e., y < y� for all A > 0.

Proposition 7 identi�es two regimes. In the �rst regime consumers hold enough wealth to buy y� provided

that the negotiation lasts long enough, which happens with probability e�
�
� p(y

�). As � decreases or �

increases, the fraction of matches where y� is implemented increases and welfare increases. The asset price,
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however, is not a¤ected by � or �. In the second regime consumers hold less than p(y�) and hence trades

are ine¢ cient in all matches.

From (26) the interest rate spread is the product of four components: the search friction, �, the bar-

gaining power, �, the negotiability friction, e�
�
� p(y), and the marginal value of wealth in the DM, `(y). The

negotiability term is akin to a stochastic pledgeability coe¢ cient, but there are noteworthy di¤erences. First,

this negotiability term is endogenous and depends on the time it takes to negotiate assets, the stochastic

time horizon of the negotiation, and the bargaining protocol as represented by p(y). Second, the comparative

statics for asset prices di¤er from the ones with a �xed pledgeability coe¢ cient. Indeed, the asset spread

decreases with A, and it increases with both � and �. In contrast, asset prices vary in a non-monotone

fashion with constant pledgeability coe¢ cients. Overall, the expression for the interest rate spread captures

the fact that bargaining frictions a¤ect asset prices through two channels: traders�bargaining powers and

the time to negotiate asset sales.

The last part of Proposition 7 compares equilibria under symmetric Nash bargaining and equilibria under

symmetric gradual bargaining when � = 0 so that the negotiability constraint does not bind. Under gradual

bargaining, if A is su¢ ciently large, then y = y�. In contrast, under Nash bargaining, the equilibrium never

achieves �rst best. The non-monotonicity of the Nash solution generates asset misallocation by preventing

the market from clearing if all the asset supply is held by consumers. As a result, a fraction of A is held by

producers even though they have no liquidity needs while consumers are liquidity-constrained. This result

shows that gradual bargaining is not only desirable for asset owners to increase their surplus (Proposition

4), it is also socially desirable to avoid the misallocation of assets.

5.2 An OTC market with linear payo¤s

In order to illustrate the last part of Proposition 7, we provide a stark example of an OTC market where Nash

bargaining delivers the worst possible allocation while gradual bargaining delivers the �rst best. We adopt

a speci�cation with linear payo¤s, similar to Lagos and Zhang (2018). As in Example 1, at the beginning of

each period producers (sellers) are endowed with 
 units of DM goods (interpreted as short-lived assets) and

have a linear technology to transform each unit of the DM good into "` > 0 units of numeraire. Consumers

(buyers) receive no endowment but can transform the DM good into "h > "` units of numeraire. Hence,

u(y) = "hy and �(y) = "`y. Producers choose the quantity of DM goods, ! � 
, to bring into a bilateral

match.14 Lucas trees are now interpreted as �at money by setting d = 0. The spread between the rate

14The assumption according to which agents can choose to bring only a fraction of their asset holdings in a match was
introduced by Berentsen and Rocheteau (2003), Lagos and Rocheteau (2008), and Lagos (2010). This assumption addresses
the fact that under Nash bargaining agents might have incentives to hide some of their assets.
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of return of money (r = ��=(1 + �) where � is the money growth rate implemented through lump-sum

transfers) and the rate of time preference, given by (22), is denoted i. We set � = 0 so that the negotiability

constraint is never binding.

Suppose �rst that agents negotiate according to Nash. The outcome in a match where the buyer holds

z and the seller holds ! is given by:

max
y;p
("hy � p)(p� "`y) s.t. p � z and y � !:

If p � z does not bind, then the solution is y = ! and p = ("h + "`)!=2. Buyers purchase all the DM

goods, which is socially e¢ cient, and a payment is made to divide the match surplus evenly. It requires

("h + "`)!=2 � z. If p � z binds then y = ! and p = z if ("h + "`) z � 2"h"`!. Otherwise, if ("h + "`) z <

2"h"`!, then p = z and y = ("h + "`) z=(2"`"h). The seller�s surplus, us(!; z) � p(!; z) � "`y(!; z), is

piecewise linear and non-monotone in !. It reaches a maximum for ! = 2z= ("h + "`). Similarly, the buyer�s

surplus, ub(!; z) � "hy(!; z)� p(!; z), is piecewise linear, non-monotone in z, and reaches a maximum when

z = 2"h"`!=("h + "`).

Alternatively, if agents bargain gradually over real balances, then, from (9), ub0(z) = ("h � "`) =(2"`) if

y � ! does not bind. The buyer�s surplus is monotone increasing in his real balances. Similarly, the seller�s

surplus is monotone in ! and the payment for y units of DM goods is p(y) = 2"h"`y=("h + "`).

Irrespective of the bargaining solution, the seller chooses ! � 
 to maximize
R
us(!; z)dF b(z), where

F b(z) is the distribution of real balances across buyers. The buyer�s problem consists in choosing z in order

to maximize �iz + �
R
ub(z; !)dF s(!) where F s(!) is the distribution of inventories held by sellers in DM

matches. We characterize equilibrium allocations in the following proposition.

Proposition 8 (Allocations in OTC markets.) Suppose sellers are endowed with 
 units of DM goods

and preferences are given by u(y) = "hy and �(y) = "`y. The liquid asset takes the form of �at money, d = 0,

with spread i. Under Nash bargaining, for all i > 0, there is no monetary equilibrium and the OTC market

is inactive. Under gradual bargaining, if i � �("h�"`)
2"`

then there exists a monetary equilibrium implementing

the �rst best.

Proposition 8 provides a stark illustration of the importance of the agendas of the bilateral negotiations

in OTC markets. If agents bargain according to Nash, then the OTC market is inactive and money is not

valued for all i � 0, even at the Friedman rule. All assets are held by the least productive agents, which

corresponds to the worst allocation.15 We represent the seller�s and buyer�s best-response functions, !BR

15This result does not rely on preferences being linear and is robust to various alternative assumptions. See Lebeau (2018)
for details. In Appendix D we study a version of this model with strictly concave payo¤s and dealers, as in Du¢ e et al. (2005).
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and zBR, for symmetric equilibria in the left panel of Figure 7. The only intersection is when z = ! = 0.

If sellers bring 
 in the match, then buyers bring at most z = 2"h"`
=("h + "`) real balances in order

to maximize their surplus. But if sellers anticipate this amount of real balances, they will bring at most

! = 4"h"`
=("h + "`)
2 < 
. And so on. The process unravels until neither the buyer nor the seller brings

anything to trade.

BRω BRω

BRz

BRz

Ω Ω

<

<
<

Nash solution Gradual solution

Figure 7: Symmetric best-response correspondences under Nash (left) and gradual (right) bargaining.

In contrast, if agents bargain gradually, then the �rst-best trades are implemented in all matches provided

that i is not too high. (This result is also true if agents bargain gradually over the DM good.) We represent

the best response correspondences under gradual bargaining and assuming symmetry across agents in the

right panel of Figure 7. Note that sellers bring at the minimum the amount of DM goods corresponding to

what buyers can pay for and they can bring up to their full endowment 
 (i.e., their best response is an

interval). For low interest rates, there exists a Nash equilibrium where ! = 
 and z = 2"h"`
=("h+"`). The

OTC market is active and it achieves the �rst best where in all matches sellers transfer all their endowments

of DM goods to buyers. The unravelling that occurs under the Nash solution is avoided precisely because

agents�surpluses are monotone increasing in the goods or assets that agents bring in a match.

5.3 Endogenous negotiability

We now endogenize the negotiability of assets, �, by allowing consumers to choose the speed at which their

assets are negotiated and transferred. For example, Bitcoin sellers can choose among a menu of fees to

remunerate the third parties who will con�rm their transactions. As evidenced in Figure 8, where we plot

estimates of the transaction fees paid by sellers as a function of con�rmation time for a median-sized Bitcoin

transaction, the shorter the desired con�rmation time, the higher the fee.
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Figure 8: Estimated transaction fee vs con�rmation time for median Bitcoin transaction (225 bytes). Source:
https://bitcoinfees.github.io/, consulted August 1, 2018.

Consumers choose � when a match is formed but before �� is realized, where �� is exponentially distributed

with mean 1=�. There is a cost,  (�), associated with the speed of the transaction, where  (0) =  0(0) = 0,

 0(�) > 0 and  00(�) > 0. We can think of it as the cost of computer power to execute a trade and transfer

assets safely.

The consumer�s choice of asset holdings and speed of negotiation can be written compactly as:

max
zb;�

�
�szb + �

�
� (�) + Sb(zb; �)

�	
; where Sb(zb; �) =

Z y

0

e��
p(x)
�
�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx; (27)

i.e. Sb(zb; �) is the expected surplus of a consumer holding zb assets when the speed of negotiation is �

and y = p�1(zb). The novelty in (27) is the �rst term in squared brackets that represents the cost to

invest in a technology to negotiate assets at speed �. Despite the lack of concavity of the problem we can

still fully characterize its solution and in the Appendix (see Lemma 5) we show that it is generically unique.

Moreover, as the cost of holding assets, s, increases consumers reduce both their asset holdings and the speed

of negotiation. A reduction in search frictions raises the demand for assets and the speed of negotiation.

The following proposition shows the existence of a unique general equilibrium with endogenous nego-

tiability, and compares the equilibrium outcome to the constrained e¢ cient �. The speed of negotiation is

constrained-e¢ cient if it maximizes the social welfare subject to the same cost as private agents,  (�), and

subject to the same trading protocols in the DM and CM. It means that the pricing in the DM is given by

p(y) and the asset spread in the CM is a market clearing price.

Proposition 9 (Equilibrium with endogenous negotiability.)
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1. There exists a steady-state equilibrium and the equilibrium spread, s, is uniquely determined. If Ad �

�p(y�)=(1 + �) then s = 0 and � is maximum. If Ad < �p(y�)=(1 + �) then an increase in A reduces s,

but raises �.

2. Asset negotiability is constrained-e¢ cient if and only if Ad � �p(y�)=(1 + �) and � = 1. If Ad <

�p(y�)=(1 + �) then � is ine¢ ciently low for all �.

The �rst part of Proposition 9 shows that an increase in A reduces the spread s, which leads to a higher �.

Intuitively, if consumers have to sell more assets, they will �nd it worthwhile to increase the speed at which

they can negotiate those assets. The second part shows that equilibrium negotiability is constrained-e¢ cient

if and only if A is abundant, so that s = 0, and consumers have all the bargaining power. This result is

intuitive since the costly investment in asset negotiability creates a holdup problem that can only be solved

by having the ones making the investment receive the whole match surplus. However, if A is low so that

s > 0, then the investment in � is ine¢ ciently low even when � = 1. This ine¢ ciency occurs because of a

pecuniary externality according to which the demand for the asset, and hence its price, increases with �.

The planner understands this externality and hence chooses a � larger than the one that consumers would

choose even if they had all the bargaining power.

6 Bargaining with multiple assets and endogenous agenda

We extend our model to have multiple (liquid) assets in order to investigate cross-sectional di¤erences in

asset prices. We will show that our model generates a pecking-order theory of asset sales and rate-of-return

di¤erences across assets.

There are J types of one-period lived Lucas trees indexed by j 2 f1; :::; Jg, where each Lucas tree born in

t�1 pays o¤ one unit of numeraire in the CM of t. The supply of each Lucas tree is denoted Aj and the new

Lucas trees are received by consumers in a lump-sum fashion at the beginning of each CM. We index �at

money by j = 0. We rank assets according to their negotiability, �0 � �1 � �2 � ::: � �J , that we interpret

as a parameter of the technology to transfer asset ownership (e.g., physical transfer, a ledger, a blockchain

technology).16 We assume that �at money is the most negotiable asset because it is a tangible object whose

ownership is asserted by simply carrying it and it can be authenticated with relatively small e¤ort. It

takes more time to transfer and verify the ownership of non-tangible assets (e.g., crypto-currencies), making

them less negotiable. Complex �nancial securities take even more time to be authenticated and evaluated.

16 In that regard, our theory complies with the Wallace (1998) dictum in that it speci�es assets by how their physical properties
determine the technology to transfer their ownership, which permits the assets�role in exchange to be endogenous.
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In Figure 9 we provide some evidence based on Pagnotta and Philippon (2018) and O�Kee¤e (2018) that

transaction times vary for di¤erent classes of assets.17 In each pairwise meeting, the negotiation ends at

time �� where �� is exponentially distributed with mean 1=�. The consumer�s bargaining power is �.18

Figure 9: Trading delays by asset classes. Sources: Pagnotta and Philippon (2018), O�Kee¤e (2018).

We let consumers choose the order according to which assets are sold (after �� has been realized). The

cumulative amount of asset of type j that has been up for negotiation at time � is denoted !j(�) and

!(�) =
PJ

j=0 !j(�). It obeys the following law of motion:

!0j(�) = �j�j(�) for all j 2 f0; 1; :::; Jg; (28)

where �j(�) 2 [0; 1] is the fraction of time devoted to the sale of asset j at time � and
PJ

j=0 �j(�) = 1.

Moreover, feasibility implies �j(�) 2 [0; 1] if !j(�) < aj and �j(�) = 0 otherwise. In words, an agent can

add asset j on the negotiating table at time � only if he has not sold all his holdings of asset j prior to � .

Replacing � by !0j in (15), the change in the consumer�s consumption and the change in the overall payment

over time are

y0(�) =
�u0(y) + (1� �) v0(y)

u0(y)v0(y)
!0(�) (29)

p0(�) = !0(�); (30)

if y(�) < y� and y0(�) = p0(�) = 0 otherwise.

The surplus of a consumer in a DM match with portfolio a = [aj ]Jj=0, agenda � = [�j ]
J
j=0, and time to

negotiate �� is:

S(a;�; ��) = �

Z ��

0

` [y(�)]!0(�)d� = �

Z !(��)

0

` [y(!)] d!: (31)

17As mentioned earlier, it is hard to disentangle the di¤erent sources of delays in asset transactions (see, e.g., Du¢ e, 2012)
but there is strong evidence that those delays vary across assets. In our model, we keep search frictions the same across assets
and attribute all the di¤erences to the negotiation process and the time to transfer ownership.
18One could allow � to be a function of � , which would not a¤ect our results qualitatively. One could also assume that �

varies with the type of asset that is currently under negotiation. Such extension would allow our theory to encompass the
explanations for rate-of-return di¤erences across assets by Zhu and Wallace (2007) and Rocheteau and Nosal (2017).
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Over a small time interval of length d� the consumer sells !0(�) units of assets where each unit generates

a marginal surplus equal to �` (y). The right side of (31) is obtained by adopting the change of variable

! = !(�). It follows that the consumer surplus depends on the agenda � only through the amount of assets

that can be negotiated up to �� , !(��). From (28) !(��) =
R ��
0

PJ
j=0 �j�j(�)d� . In order to characterize the

optimal strategy to maximize !(��) we denote T0 = 0 and

Tj (a) =

j�1X
k=0

ak
�k
for all j 2 f1; 2; :::; J + 1g: (32)

So Tj is the time that it takes to sell the �rst j � 1 most negotiable assets.

Lemma 3 (Pecking order) For any portfolio a and any realization of �� , the optimal choice �� = [��j ] is

given by

��j (�) =

�
1 if Tj < � � Tj+1
0 otherwise

:

Lemma 3 shows that it is optimal to adopt a pecking order to sell assets.19 Consumers start paying

with money. When their money holdings are exhausted, they start selling asset 1, etc. Hence, in a fraction

1 � e��T1 of matches only money is used to �nance consumption, where T1 is endogenous. In a fraction

e��T1�e��T2 of matches both money and type-1 Lucas trees serve as means of payments. And so on. Given

this pecking order, the expected maximized surplus of the consumer is:

S(a) =

Z +1

0

�e���S(a;��; �)d� = �

JX
j=0

�j

Z Tj+1

Tj

e��� `[y(�)]d� : (33)

Over the time interval [Tj ; Tj+1] agents negotiate asset j where the speed of the negotiation is given by �j .

We now turn to the asset pricing implications of this pecking order. The portfolio problem in the CM is

given by

max
a�0

f�sa+ �S(a)g ; (34)

where s = [sj ] is the vector of asset spreads, i.e., sj = (i� ij) = (1 + ij) where the nominal interest rate of

asset j is ij . For �at money, i0 = 0 and s0 = i. According to (34) the consumer maximizes his expected DM

surplus net of the costs of holding assets as measured by the spreads [sj ]. The FOCs of the maximization

problem (34) are:

sj = �
@S(a)

@aj
: (35)

The left side of (35) is the opportunity cost of holding asset j. The right side is the probability � that the

consumer receives an opportunity to spend, �, times the marginal liquidity value from holding asset j. The

expression of this last term is given in the following lemma.
19For a pecking-order theory of payments based on informational asymmetries between consumers and producers, see Ro-

cheteau (2011).

29



Lemma 4 The marginal value of asset j to a consumer with portfolio a is

@S(a)

@aj
=

negotiability valuez }| {
��

JX
k=j+1

Z Tk+1

Tk

(�j � �k)
�j

e��� `[y(�)]d� +

liquidity valuez }| {
�e��TJ+1`[y(TJ+1)]: (36)

From (36), holding an additional unit of aj has two bene�ts to the consumer. First, there is a liquidity

bene�t according to which the consumer has more wealth, which relaxes his liquidity constraint and allows

him to consume more if the negotiation is not terminated before the whole portfolio has been sold. This

e¤ect is captured by the last term on the right side and is analogous to (26). Second, there is a negotiability

bene�t according to which asset j speeds up the negotiation relative to less negotiable assets of types j + k.

This �rst term on the right side of (36) is asset speci�c, as it depends on �j .

By market clearing aj = Aj for all j � 1. Hence, an equilibrium can be reduced to a list
D
a0; fsjgJj=1

E
that solves (35). In the following proposition we measure the liquidity of an asset by its velocity or turnover

de�ned as

Vj �
�
R +1
0

�e��x
R x
0
!0j(�)1f!(�)<p(y�)gd�dx

Aj
: (37)

The numerator corresponds to the aggregate quantity of asset j sold in pairwise meetings while the denom-

inator is the supply of the asset.

Proposition 10 (The negotiability structure of asset yields.) For all fAjgJj=1 if �0 > �1 then there

is a �� > 0 such that for all i < �� there exists a unique steady-state monetary equilibrium with aggregate real

balances A0(i) > 0. Let 
1 = A0(i) and for each j = 2; ::; J , let 
j = A0(i) +
Pj�1

k=1Ak.

1. If 
j+1 < p(y�) and �j > �j+1, then sj > sj+1. If 
j+1 � p(y�), then sj+k = 0 for all k � 0.

2. If �j > �j+1 and p(y�) > 
j, then Vj > Vj+1. If p(y�) � 
j then Vj = 0.

3. As � approaches 0, jsj � sj0 j approaches 0 for all j; j0 2 f0; :::; Jg. Asset velocity, Vj, approaches �

for all j such that 
j � p(y�), 0 for all j such that 
j � p(y�), and � [p(y�)� 
j ] =Aj for j such that

p(y�) 2 (
j ;
j+1).

Proposition 10 has several implications. First, �at money is valued for low i irrespective of the supply

of Lucas trees. Even if the capitalization of all Lucas trees,
PJ

k=1Ak, is larger than liquidity needs, p(y
�),

money is useful because it can be negotiated faster, thereby allowing agents to �nance a larger consumption

when �� is low.

Second, even though all Lucas trees yield identical dividend streams, the equilibrium features rate-of-

return di¤erences across assets. Provided that asset supplies are not too large, assets with a high negotiability
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command a lower interest rate than assets with a low negotiability, i.e., ij < ij+1 if �j > �j+1. The key

components of our theory is that negotiation takes time as assets are sold gradually, and not all assets

can be sold at equal speed due to technological di¤erences to authenticate and transfer assets. Part 2 of

Proposition 10 shows that assets that are more negotiable have a higher velocity, which is a consequence of

the endogenous pecking order. As a result, there is a positive correlation between velocity and asset prices.

Finally, Part 3 of Proposition 10 considers the limit when the expected time horizon of the negotiation

becomes arbitrarily large. If the risk that the negotiation ends before the portfolio of assets has been sold

goes to zero, then the rates of return of all assets converge to the same value, i.e., there is rate of return

equality. In that case the negotiability of assets, and the order according to which they are negotiated, does

not a¤ect their rates of return. The order at which assets are sold, however, matters for velocities. Indeed,

only a fraction of assets are used for transactions and those assets have a maximum velocity equal to �.

7 Two applications

We propose two applications of the model in Section 6 to address puzzles in monetary theory and �nance,

e.g., the rate of return dominance and the indeterminacy of nominal exchange rates. In the �rst application,

we study OMOs and anticipated in�ation in economies where money and interest-bearing government bonds

coexist. The second application describes an economy with two currencies that di¤er by their in�ation rate

and their negotiability, allowing us to break exchange rate indeterminacy.

7.1 Money and bonds

We illustrate some novel comparative statics of our model regarding the e¤ects of OMOs on aggregate output.

We consider the case where J = 1 with asset 1 being interpreted as short-term, real government bonds. We

start with the case where �� is deterministic and we will return to the case where �� is stochastic later. The

consumer�s portfolio problem in the CM is given by

max
(a0;a1)

�ia0 � s1a1 + �fu[y(a0; a1)]� p[y(a0; a1)]g;

where DM output is

y(a0; a1) =

8<: p�1 (�0��)
p�1 [a0 (1� �1=�0) + �1�� ]
p�1 (a0 + a1)

if ��
� a0=�0
2 (a0=�0; a0=�0 + a1=�1]
� a0=�0 + a1=�1

. (38)

While a1 = A1 by market clearing, a0 is endogenous and depends on policy through both i and A1. We

interpret an open-market operation as a change in A1 associated with a change of opposite sign of the

money supply. Because money is neutral, only the change in A1 matters (e.g., Rocheteau et al., 2018).
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We distinguish four regimes, represented in the parameter space (�� ; A1) in Figure 10, where y1 satis�es

i = �� [(�0 � �1)=�0] `(y1) and y2 satis�es i = ��`(y2).

In regime I, � = T1, the consumer holds just enough real balances to spend them all by the time the

negotiation ends. In such an endogenous "cash-in-advance" regime, y = p�1(a0), i = ��`(y), and s1 = 0.

In regime II, �� 2 (T1; T2), only a fraction of bonds can be sold before the negotiation ends. Hence, s1 = 0.

Output and real balances solve y = p�1 [a0(1� �1=�0) + �1�� ] and i = (�0 � �1)��`(y)=�0. In both regimes

I and II a change in A1 has no e¤ect on interest rates and output. In regime IV, � > T2, the negotiability

constraint does not bind. Hence, y = min
�
p�1(a0 + a1); y

�	, s1 = i, and i1 = 0. Changes in A1 are

ine¤ective because money and bonds are perfect substitutes.

We now focus on regime III, T2 = �� , where the consumer�s portfolio is sold in exactly � units of time.

Such equilibria feature rate of return dominance, s1 2 (0; i), and OMOs are e¤ective.

Proposition 11 (Coexistence of money and interest-bearing bonds and policy.) A monetary equi-

librium with T2 = �� exists if

�1 [�0� � p(y2)]
�0 � �1

< A1 < min

�
�1 [�0� � p(y1)]

�0 � �1
; �1�

�
and

p(y1)

�0
< �� <

p(y2)

�1
.

Output and the interest rate spread are determined recursively according to:

y = p�1
�
�0�� �

�
�0 � �1
�1

�
A1

�
(39)

s1 =
�0
�1
i� ��

�
�0 � �1
�1

�
`(y): (40)

An open-market sale of bonds raises i1 and reduces y. An increase in the money growth rate has no e¤ect

on output. Assuming � and � are close to 0, money growth a¤ects nominal interest rates according to

@i

@�
� 1, @i1

@�
� �1 � �0

�1
< 0:

As A1 increases, consumers reduce a0 in order to be able to sell their whole portfolio in � units of

time. But bonds take more time than money to be sold, and hence consumption decreases. Formally,

a0=�0 +A1=�1 = �� and hence @a0=@A1 = ��0=�1 < �1. An open market sale of bonds decreases output by

crowding out a highly negotiable asset, money, with a less negotiable asset, bonds.

An increase in the money growth rate does not a¤ect real balances in equilibria where T2 = �� because

agents would hold more real balances if they were not constrained by �� . The interest rate on illiquid bonds

increases one-to-one with money growth by the Fisher e¤ect. The interest rate on liquid government bonds,

i1 �
�
�0��1
�1

�
[��`(y)� i], decreases with in�ation according to the Mundell-Tobin e¤ect.
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Figure 10: Typology of equilibria with money and bonds

Figure 11 presents a numerical example where �� is exponentially distributed.20 The black line on Figure

11 plots y as a function of �� when A1 = 0:15. Following an increase in A1 (from 0.15 to 0.35) consumers

Figure 11: Stochastic case with money and bonds: Output distribution

reduce their real balances but T2 increases. For low values of �� , y is not a¤ected by the change in A1. If

�� falls into an intermediate range, then output is lower. This negotiability e¤ect of OMOs corresponds to

the gray region in Figure 11. If �� is big enough, output is higher through a liquidity e¤ect, as visible in

the blue region. The impact on aggregate output (across all pairwise meetings) depends on the relative

sizes of the negotiability and liquidity e¤ects, which are ultimately determined by the distribution of �� . In

20Preferences are de�ned by u(y) = 2
p
y and v(y) = (2=3)y3=2, thus y� = 1. We pick � = 1, � = 0:5, �0 = 2, �1 = 1, i = 0:15.

� = 3:33, so that the mean time horizon is 0.3.
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our example, the weight on the blue region is high enough for the liquidity e¤ect to dominate, causing the

expected aggregate output to increase.

7.2 Multiple (crypto-)currencies

Our model can be applied to economies with multiple �at monies in order to address the nominal exchange

rate indeterminacy puzzle. This application is topical given the development of multiple crypto-currencies,

such as Bitcoins, Litecoin, Ethereum, and others. A transaction with crypto-currencies requires con�rmation

that takes time, and con�rmation times vary across currencies as illustrated in Figure 12. Our negotiability

parameter, �, is a proxy for the time it takes to transfer the ownership of virtual coins.

Figure 12: Con�rmation times for di¤erent cryptocurrencies. Source: O�Kee¤e (2018).

We now consider an economy with two currencies, currency 0, the supply of which grows at rate �0

and currency 1, the supply of which grows at rate �1. Currency 0 has lower con�rmation times and can

be transferred faster than currency 1, i.e., �0 > �1. However, the supply of currency 0 grows faster than

the supply of currency 1, �0 > �1. We focus on steady-state equilibria where the rate of return and the

aggregate real supply of each currency are constant.

We start with the simple case where �� is deterministic. For the two monies to coexist the equilibrium

must feature �� � T2. The FOCs are

�i0 �
�

�0
+ ��`(y) � 0, �= � if a0 > 0 (41)

�i1 �
�

�1
+ ��`(y) � 0, �= � if a1 > 0: (42)

where � � 0 is the Lagrange multiplier associated with the negotiability constraint. If the negotiability

constraint does not bind, � = 0, then (41)-(42) imply i0 = i1. The two currencies must have the same rate

of return, which requires �0 = �1 in a steady-state equilibrium. If the negotiability constraint binds, � > 0,

then the two currencies will be held only if i0 > i1. Moreover, by market clearing, the values of the two

currencies solve �0;tA0;t + �1;tA1;t = p(y) and the nominal exchange rate is et = �0;t=�1;t.

Proposition 12 (Dual currency economy.)
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1. Suppose i0 = i1 = i. If �0�� > p(y), where y = `�1 (i=��), then there exists a steady-state equilibrium

where currencies 0 and 1 are valued. If �1�� � p(y), then any e 2 (0;+1) is an equilibrium exchange

rate. If �1�� < p(y) then there is a positive lower bound for the exchange rate equal to

e =
A1;t
A0;t

�0
�1

[p(y)� �1�� ]
[�0�� � p(y)]

: (43)

2. Suppose i0 > i1. There are two thresholds 0 < ��0 < ��1 such that for all � 2 (��0; ��1), there exists a

unique steady-state equilibrium where both currencies 0 and 1 are valued and output solves

i0�0 � i1�1
�0 � �1

= ��`(y): (44)

In�ation rates a¤ect output according to @y=@�0 < 0 and @y=@�1 > 0. Moreover, currency 0 appreci-

ates vis-a-vis currency 1 as � or � increases or as �� decreases.

The �rst part of Proposition 12 assumes equal money growth rates across currencies. If currency 0

is su¢ ciently negotiable, then there exists an equilibrium where both currencies are valued. Moreover, if

currency 1 is also highly negotiable, then the nominal exchange rate between the two currencies, e = �0=�1,

can be anything, in accordance with the indeterminacy result of Kareken and Wallace (1981). However, if

the negotiability of currency 1 is limited, then the range of equilibrium values for e is reduced, i.e., there is

a lower bond for the exchange rate.

The second part of Proposition 12 assumes di¤erent money growth rates and focuses on equilibria where

� > 0 and T2 = �� , i.e., a0=�0 + a1=�1 = �� and p(y) = a0 + a1. The determination of a dual currency

equilibrium is illustrated in Figure 13. The condition a0 + a1 = p(y) is represented by the red line while the

negotiability constraint, a0=�0 + a1=�1 = �� , is represented by the blue line. If an intersection exists, then it

is unique. There exists an equilibrium where the two currencies coexist provided that the time allocated to

the negotiation, �� , is neither too small nor too large. If �� is small, agents will choose to trade with the most

negotiable currency only. If �� is large, agents will choose to only hold the currency with the lowest in�ation

rate. For intermediate values for �� agents choose a diversi�ed portfolio of currencies. One can interpret such

an equilibrium as one where di¤erent crypto-currencies with di¤erent technologies to record asset transfers

coexist. One can also think of a dollarization equilibrium where the high-in�ation domestic currency coexists

with the low-in�ation foreign currency.

If the in�ation rate of the most negotiable currency increases, then output decreases, in accordance with

textbook comparative statics. However, as �1 increases, agents �nd it optimal to reduce their holdings of

currency 1 and raise their holdings of currency 0. As a result, they can buy more output over the time
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horizon �� . In the context of a dollarization equilibrium this would mean that an increase of the in�ation

rate of the foreign currency raises output by reverting the dollarization process.

Our model provides a resolution to the Kareken-Wallace indeterminacy result.21 In a two-currency

equilibrium the nominal exchange rate is uniquely determined and given by

et =
�0
�1

A1;t
A0;t

p(y)� �1��
�0�� � p(y)

: (45)

It depends on the ratio of the negotiability parameters and the ratio of the money supplies. As the frequency

of trading opportunities or the consumer�s bargaining power increase, consumers shift their portfolios toward

the most negotiable currency, which leads to an appreciation of the exchange rate. Conversely, as the time

to negotiate increases, agents reallocate their portfolios toward the currency with the highest rate of return,

and hence the exchange rate depreciates.

8 Conclusion

The objective of this paper was to introduce a new approach to bargaining into models of decentralized

asset market. More than a new solution, we advocate for a new de�nition to the bargaining problem

for negotiations over unrestricted asset portfolios. This new de�nition is a natural extension of existing

bargaining theories (e.g., Osborne and Rubinstein, 1990) for a new class of models of decentralized markets

with richer asset holdings. It includes as a primitive the agenda of the negotiation, i.e., a partition of the

portfolio into asset bundles to be sold sequentially. Each portfolio negotiation has an agenda: we require
21For information-based theories of the determinacy of the nominal exchange rate, see Zhang (2014) based on Lester et

al. (2012) and Gomis-Porqueras et al. (2017) based on Li et al. (2012). Garratt and Wallace (2018) study an overlapping
generation model with �at money and crypto-currencies and show coexistence when �at money is subject to a storage cost.
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making it explicit. The notion of agenda acknowledges the size and multi-dimensionality of asset portfolios

and its importance for trading outcomes.

Our approach complies with the Nash program: it has (multiple) strategic foundations, in the form

of alternating-o¤er games, and axiomatic foundations. It encompasses existing bargaining solutions; we

provided speci�c agendas for which our model generates the Nash or Kalai solutions. We showed through

several examples that the choice of the agenda is crucial for allocations and welfare. We o¤ered insights on

how to pick, or endogenize agendas.

The second part of the paper consisted in introducing bargaining solutions with an agenda into o¤-the-

shelves models of decentralized or OTC markets. Our results demonstrate that these bargaining solutions

are very tractable and generate novel normative and positive implications for asset markets. For instance,

the choice of the agenda can have dramatic implications for the functioning of OTC markets with outcomes

varying from a complete break-down to the implementation of �rst-best trades. We provided a theory to

endogenize agendas in the presence of multiple assets, which gave rise to a pecking order for asset sales and a

non-degenerate distribution of asset returns. We used our model to account for the rate-of-return dominance

puzzle in monetary theory and for the determinacy of the nominal exchange rate between two �at currencies.

In terms of future research, we want to explore a continuous-time version of the alternating ultimatum

o¤er bargaining games with endogenous risk of breakdown determined by the random arrivals of potential

trading partners. More can be done to endogenize agendas in the presence of multiple assets, e.g., by

introducing informational frictions. It would also be realistic to allow for multilateral matching and sequential

negotiations with multiple trading partners.
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Appendix A: Proofs of Lemmas and Propositions

Proof of Lemmas 1 and 2. Both lemmas are concerned with the derivation of Pareto frontiers. We use

ub to denote the consumer�s payo¤ and us the producer�s payo¤. First we begin with bargaining over assets,

and the Pareto frontier is derived from the program

ub = max
y�0

�
u(y)� p+ ub0

	
s.t. p� �(y) + us0 � us; p � �� :

The consumer chooses the terms of trade, (y; p), to maximize his utility subject the constraint that he must

guarantee some utility level us to the producer. If �� � us�us0+�(y�), then y = y� and p = us�us0+�(y�).

Moreover, ub + us = u(y�) � �(y�) + ub0 + us0. If �� < us � us0 + �(y�), then p = �� = us � us0 + �(y), i.e.,

y = ��1(�� � us + us0).

Now we turn to bargaining over DM goods. The Pareto frontier solves

ub = max
y;p

fu(y)� pg s.t. � �(y) + p = us, p � z, y � �y.

The payment cannot be greater than the consumer�s asset holdings and the output is not greater than the

upper bound �y. Substitute p = us + �(y) into the constraints and rewrite the problem as:

ub = max
y;p

fu(y)� �(y)� usg s.t. y � min
�
��1 (p� us) , �y

	
:

If us � z � �(�y) then y = �y (note that we assume �y � y�) and the equation of the Pareto frontier is simply

ub + us = u(�y)� �(�y):

If the payment constraint binds then y = ��1 (z � us) and

ub = u � ��1 (z � us)� z:

This gives a negative relationship between ub and us since @ub=@us = �u0(y)=v0(y). Moreover, @2ub=(@us)2 <

0, i.e., the Pareto frontier is strictly concave.

Proof of Proposition 2. By the de�nition of the consumer�s utility, ub(�) = ub0 + u [y(�)] � �� , it

follows that

ub0(�) = u0 (y) y0(�)� �: (46)

The change in the consumer�s utility along the gradual bargaining path the change in DM consumption as

the consumer adds assets to the negotiating table, net of the asset transfer (the second term on the right

side). From (9) and (46), we obtain (11). The total transfer of assets is p(y) =
R y
0
� @�@xdx where from (11)

@�=@x coincides with 1=y0(�) evaluated at x.

43



Proof of Proposition 4. We assume that, with no loss of generality, z � p1(y
�). This also allows us

to assume that (18) has interior solutions, and, summing (18) from n = 1 to N :

NX
n=1

"Z yn

yn�1

�0(yn)

u0(yn) + �0(yn)
u0(x)dx+

Z yn

yn�1

u0(yn)

u0(yn) + �0(yn)
�0(x)dx

#
= z:

It can be expressed more compactly asZ yN

0

h
1��

�
x;

z

N

�i
u0(x) + �

�
x;

z

N

�
�0(x)dx = z;

where

�
�
x;

z

N

�
=

NX
n=1

u0(yn)

u0(yn) + �0(yn)
1(yn�1;yn](x)

and 1(yn�1;yn](x) is the indicator function for the interval (yn�1; yn]. Note that for all N < +1 and for all

x =2 fyng,

�
�
x;

z

N

�
<

u0(x)

u0(x) + �0(x)
:

Hence, Z yN

0

h
1��

�
x;

z

N

�i
u0(x) + �

�
x;

z

N

�
�0(x)dx >

Z yN

0

2�0(x)u0(x)

u0(x) + �0(x)
dx:

So for all N < +1, the payment to �nance yN units of consumption, the left side of the inequality, is larger

than the one when N = +1, the right side of the inequality. Hence, the consumer extracts the largest

surplus when N = +1.

Derivation of consumer surpluses (23) and (27). First note that y(z; �) = p�1(minf�� ; zg) and

p(z; �) = minf�� ; zg if minf�� ; zg � p(y�), and y(z; �) = y� and p(z; �) = p(y�) otherwise, where p is given

by (16). Now, assuming that z � p(y�), the expected surplus is given by

Sb(z; �) =

Z 1

0

�e���fu[y(z; �)]� p(z; �)gd�

=

Z 1

0

�e���
Z p�1(minf��;zg)

0

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dxd�

=

Z 1

0

Z p�1(minf��;zg)

0

�e���
�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dxd�

=

Z p�1(z)

0

Z 1

p(x)=�

�e���
�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)d�dx

=

Z y

0

e�
�
� p(x)

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dx;

where y = p�1(z), the second equality follows from (16), the fourth uses iterated integral, and in the �fth we

integrate out � . Moreover, Sb(z; �) = Sb(p(y�); �) for all z > p(y�). The derivation for social welfare follows

exactly the same steps except for replacing
�u0(x)[u0(x)��0(x)]
�u0(x)+(1��)�0(x) by [u

0(x)� �0(x)].
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Proof of Proposition 6. If agents bargain gradually over the asset then the payment function is:

p(y) =

Z y

0

2u0 (x) �0(x)

u0(x) + �0(x)
dx:

Using that
2u0 (x) �0(x)

u0(x) + �0(x)
=

�
�0(x)

u0(x) + �0(x)
u0(x) +

u0 (x)

u0(x) + �0(x)
�0(x)

�
<
u0(x) + �0(x)

2
;

for all x < y� since u0(x) > �0(x), we obtain the following inequality:

p(y) <

Z y

0

1

2
[u0(x) + �0(x)] dx =

u(y) + �(y)

2
= pDM (y);

where pDM (y) is the payment function if agents bargain gradually over the DM good. We denote y1(z)

as the solution to p(y1) = min fz; p(y�)g and yDM (z) as the solution to pDM (yDM ) = min
�
z; pDM (y�)

	
.

Using the inequality above it follows that y1(z) > yDM (z) for all z such that yDM (z) < y�. We can now

compare the consumer�s surpluses under the two agendas: u(y)�p(y) > u(y)�pDM (y) and y1(z) � yDM (z)

for all z. Using that surpluses are monotone increasing in y it follows that consumers are better o¤ with

the �rst agenda than the second. We now compare the producer�s surpluses under the two agendas. Let

p� = p(y�) and pDM� = pDM (y�). For all z � p�, z� �
�
yDM (z)

�
> z� �

�
y1(z)

�
since yDM (z) < y1(z). For

all z 2
�
p�; pDM��, z � �

�
yDM (z)

�
> p� � � (y�) since the bargaining solution is monotone. It follows that

producers always prefer to bargain gradually over the DM good.

Proof of Proposition 7. For each y 2 (0; y�], equation (26) gives a negative relationship between s

and y, denoted by s = s(y), with limy!0 s(y) = +1, and s(y) is strictly decreasing. Given this function,

equilibrium is given by y that satis�es (24). Since the left side of (24) is strictly increasing in y and the right

side is strictly increasing in s and hence strictly decreasing in y, with s = s(y), and since the right side of

(24) is positive at y = 0, there is unique y that satis�es (24).

(1) Since p(y�) � (1 + �)Ad=� and sr(y�) = 0, y = y� is the unique equilibrium. In this equilibrium, the

time it takes to sell p(y�) units of wealth is �� = p(y�)=� and the probability that �� � �� is e�
�
� p(y

�). From

(25), social welfare is

W = �

Z y�

0

e�
�
� p(x) [u0(x)� �0(x)] dx;

which is independent of Ad but decreasing with �=�.

(2) Since p(y�) > (1 + �)Ad=�, the unique equilibrium features y < y� and s > 0. From (26) and (24)

the spread is the unique s 2 (0; �) solution to

s = ��e�
�
� (

1+�
��s )Ad

�
` � p�1

��
1 + �

�� s

�
Ad

��
:
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The right side is decreasing in Ad and �=�. Hence, s decreases with Ad and � but increases with �. From

(26) y is a decreasing function of s, hence y increases with Ad and, from (25), social welfare increases with

Ad. Similarly, y decreases with �=� and hence W decreases with �=�.

(3) From (1), when p(y�) � (1+ �)Ad=�, sr(y�) = 0, y = y�. Thus, as � approaches zero, the probability

that �� � �� approaches 1, and hence the social welfare approaches the �rst best.

Proof of Proposition 8. The seller�s surplus from a trade is:

us(!; z) =

8<:
"h�"`
2 !

z � "`!
("h�"`)z
2"h

if
z

!

� "h+"`
2

2
h
2"h"`
"h+"`

; "h+"`2

�
< 2"h"`

"h+"`
:

(47)

If z=! is su¢ ciently high, then all DM goods are purchased by the buyer who only spends a fraction of his

real balances. In that case, the seller�s surplus increases with !. If z=! is in some intermediate range, then

the buyer can still purchase all the DM goods of the seller but he has to spend all his real balances. In

this case, the seller�s surplus decreases with !. Finally, if z=! is low, then the buyer can only purchase a

fraction of the seller�s DM goods, and the seller�s surplus is constant. As a result, the seller�s surplus reaches

a maximum when p � z starts to bind, i.e., ! = 2z= ("h + "`). The surplus of a buyer in a bilateral match is

ub(z; !) =

8<:
"h�"`
2 !

"h! � z
("h�"`)
2"`

z
if

z

!

� "h+"`
2

2
h
2"h"`
"h+"`

; "h+"`2

�
< 2"h"`

"h+"`
:

(48)

Let �z denote the highest value on the support of F b(z). Then,

! � min
�

2�z

"h + "`
;


�
: (49)

Let �! denote the highest value in the support of F s(!). The solution is such that

z � 2"h"`�!

"h + "`
: (50)

It can be checked that ("h + "`) =2 > 2"h"`=("h+"`), i.e., the intersection of the two best-response functions,

(49) and (50), is such that the only Nash equilibrium is �z = �! = 0.

Under gradual bargaining, the Pareto frontier of the bargaining set, ub = max ("hy � p) s.t. p�"`y � us,

p � z, and y � !, is given by:

H
�
ub; us; z; !

�
= ("h � "`)! � ub � us if us � z � "`!

=
("h � "`) z

"`
� "h
"`
us � ub otherwise.

Hence, the gradual bargaining solution requires

ub0(z) = �1
2

@H=@z

@H=@ub
=
1

2

("h � "`)
"`

;
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and, by de�nition ub0(z) = "h@y=@z � 1. It follows that gradual solution gives @z=@y = 2"h"`= ("h + "`).

Integrating this expression, the payment function is p(y) = 2"h"`
"h+"`

y. The buyer�s choice of y is given by:

max
y2[0;!]

�
�i 2"h"`
"h + "`

y + �

�
"hy �

2"h"`
"h + "`

y

��
:

It can be re-expressed as:

max
y2[0;!]

[�i2"` + � ("h � "`)] y:

Provided that i � � ("h � "`) =(2"`), it is optimal to choose y = ! and to hold z = p(!). The surplus of the

seller is:

us(!; z) = min

�
p(!)� "`!; z �

("h + "`)

2"h
z

�
= min

�
"`

�
"h � "`
"h + "`

�
!;
"h � "`
2"h

z

�
:

The seller�s surplus is monotone (weakly) increasing in !. Hence, ! = 
 is a weakly dominant strategy.

Before the proof of Proposition 9, we need the following lemma, which characterizes the optimal speed

of trade and asset holdings.

Lemma 5 For each s � 0, there exists a solution, [ze(s); �e(s)], to (27). The solution is generally not

unique and hence [ze(s); �e(s)] is a correspondence, which satis�es the following properties:

(a) it is upper-hemi continuous and non-increasing in s, and non-decreasing in �;

(b) for any two spreads, 0 � s1 < s2, and any z1 2 ze(s1) and z2 2 ze(s2), z1 � z2;

(c) if z1; z2 2 ze(s) and z1 < z2, then for any s0 > s, z2 =2 ze(s0), and for any s00 < s, z1 =2 ze(s00);

(d) for all but countably many s, ze(s) is a singleton set;

(e) ze(0) = fp(y�)g; as s tends to in�nity, the correspondence [ze(s); �e(s)] converges to a singleton

f(0; 0)g.

Proof. First, we compute the partial derivatives of the consumer�s surplus function:

@Sb(zb; �)

@zb
= e��

zb

� �`(y) � 0;

@Sb(zb; �)

@�
=

Z y

0

�

�2
e��

p(x)
� p(x)

�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx > 0; with y = p�1(zb):

Moreover, @2Sb(zb; �)=@zb@� > 0 if y < y�, a fact that we will use later. So there are complementarities

between the choice of asset holdings and the speed of negotiation. The �rst-order condition with respect to

� is then

 0(�) =

Z y

0

�

�2
e��

p(x)
� p(x)

�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx: (51)
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The consumer�s surplus is bounded above by u(y�) � �(y�). Hence, it is never optimal to choose a �

larger than �� =  �1 [u(y�)� �(y�)]. Similarly, for all s > 0 it is not optimal to accumulate more than p(y�)

units of assets. Hence, with no loss in generality, we restrict the maximization problem to the compact set,

[0; ��] � [0; p(y�)]. The objective in (27) is continuous. By the Theorem of the Maximum, a solution exists

and it is upper hemi-continuous in s. We use [ze(s); �e(s)] to denote the correspondence for the maximizers.

Moreover, when s = 0, the solution is unique with ze(s) = fp(y�)g. This proves (a) and �rst part of (e).

To show generic uniqueness and monotonic comparative statics, consider the consumer problem in two

steps. First, for any given zb 2 [0; p(y�)], consider

�S(zb) = max
�2[0;��]

�
� (�) + Sb(zb; �)

	
(52)

The objective function has strictly increasing di¤erences in (zb; �) since @Sb(zb; �)=@zb is strictly increasing in

�. By Theorem 2.8.2 and 2.8.4 in Topkis (1998) argmax�2[0;��]
�
� (�) + Sb(zb; �)

	
is increasing in zb < p(y�)

and the set of maximizers is increasing in zb < p(y�) as well. Now, for any zb, the corresponding optimal

� solves (51) with y = p�1(zb). Since the right side of (51) is strictly increasing in zb < p(y�), the set of

maximizers has to be strictly increasing as well; indeed, if zb1 < zb2, and �1 and �2 are the corresponding

maximizers, it must be the case that �1 6= �2 as the same � cannot satisfy the two FOC�s at the same time.

Now, if �S(zb1) = �S(zb2), then

Sb(zb1; �2)� Sb(zb1; �1) <  (�2)�  (�1) = Sb(zb2; �2)� Sb(zb1; �1) < Sb(zb2; �2)� Sb(zb2; �1);

but the second inequality implies that Sb(zb1; �1) > Sb(zb2; �1), a contradiction to the fact that S
b(zb; �1) is

increasing in zb. Thus, �S(zb1) < �S(zb2). Moreover, since �S(z
b) is strictly increasing, it is also di¤erentiable for

all but at most a countably many points.

Thus, ze(s) consists of solutions to

max
z�0

�sz + � �S(z):

Now we prove (b) and (c). Property (b) shows that ze(s) is decreasing; (c) shows that overlapping can

happen only at end points. For (b), it follows from z1 2 ze(s1) and z2 2 ze(s2) that:

�s1z1 + � �S(z1) � �s1z2 + � �S(z2);

�s2z2 + � �S(z2) � �s2z1 + � �S(z1):

Rearrange these inequalities to obtain:

s1
�
z1 � z2

�
� �

�
�S(z1)� �S(z2)

�
� s2(z1 � z2):
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Using s2 > s1, it follows that z1 � z2. For (c), let s be given, and let z1; z2 2 ze(s) be such that z1 < z2.

Suppose, by contradiction, that z2 2 ze(s0). Then,

�sz1 + � �S(z1) = �sz2 + � �S(z2);

�s0z2 + � �S(z2) � �s0z1 + � �S(z1):

It then follows that

�s0z2 + � �S(z2) � �(s0 � s)z1 � sz2 + � �S(z2);

that is,

(s0 � s)z1 � (s0 � s)z2;

a contradiction to z1 < z2 and s0 > s. The other case is similar.

To prove (d), if we let ze(s) = max ze(s), then ze(s) is a decreasing function, and hence has at most

countably many gaps. Property (c) implies that only gaps in ze(s) corresponds to nondegenerate values of

ze(s). This proves (d). Now we prove the second part of (e). This directly follows from envelope theorem

which implies that

�S0(zb) = e��
zb

� �`(y) with y = p�1(zb) whenever it exits,

e��
zb

� is bounded between [0; 1], and the fact that `0(y) is strictly decreasing in y and `0(0) =1.

Proof of Proposition 9. (1) By the Theorem of Maximum, ze(s) is upper hemi-continuous and

compact-valued. To prove equilibrium existence, we need to convexify the correspondence ze(s) and thereby

allow for asymmetric equilibria. To do so, we let ze(s) = min ze(s) and let ze(s) = max ze(s), and, for each s,

consider the convex hull, Z(s) = [ze(s); ze(s)], of ze(s). For any z 2 Z(s), we can interpret z as the aggregate

optimal real balances from the consumers. The correspondence Z(s) is then upper hemi-continuous, compact-

valued, and convex-valued. Moreover, by Lemma 5 (c) we know that if s > s0, then ze(s0) � ze(s). Now,

to de�ne market-clearing in a uni�ed way, we rede�ne Z(0) = [p(y�);maxf 1+�� Ad; p(y�)g]: We have an

equilibrium i¤ we can �nd a spread s that satis�es the market clearing condition

1 + �

�� sAd 2 Z(s) (53)

for some s � 0. The properties on Z(s) and the fact that ze(0) � 1+�
� Ad and ze(�) < 1 = lims!�

1+�
��sAd

ensures that (53) is satis�ed by some s� 2 [0; �). Such s� is unique since any selection of Z(s) is decreasing

and 1+�
��sAd is strictly increasing in s.
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(2) The planner�s problem solves:

max
z;�; s

�
� (�) +

Z y

0

e��
p(x)
� [u0 (x)� v0 (x)] dx

�
(54)

s.t. z 2 argmax
z

�
�sz + �Sb(z; �)

	
(55)

p(y) �
�
1 + �

�� s

�
Ad, �= � if s > 0 (56)

According to (54) the planner maximizes the expected surplus of each match net of the negotiability cost.

It is subject to (55) according to which consumers choose their asset holdings optimally taking as given

the negotiability of the asset and its cost (which is omitted from the consumer�s objective). From (56) the

spread, s, is consistent with market clearing.

From (1), if Ad � �p(y�)=(1+ �) then equilibrium is such that s = 0 and y = y� irrespective of �. Hence,

the solution to (54) is

 0(�) =

Z y�

0

�

�2
p(x)e��

p(x)
� [u0 (x)� v0 (x)] dx:

It coincides with (51) if and only if � = 1. If � < 1 then the decentralized choice of � is smaller than the

planner�s choice. For the case Ad < �p(y�)=(1+�), we proved in Proposition 7 that s increases with �. From

market clearing p(y) =
�
1+�
��s

�
Ad, and hence y is an increasing function of s. Hence, the solution to the

planner�s problem is:

 0(�) =

Z y

0

�

�2
p(x)e��

p(x)
� [u0 (x)� v0 (x)] dx+ e��

p(y)
� [u0 (y)� v0 (y)] @y

@�
:

The second term on the right side captures the e¤ect of an increase of negotiability on the spread and hence

y. Even if � = 1 this condition does not coincide with (51).

Derivation of (31). Note that by (29) and (30),

u0 [y(�)] y0(�)� p0(�) = u0 [y(�)]
�u0 [y(�)] + (1� �) v0 [y(�)]

u0 [y(�)] v0 [y(�)]
!0(�)� !0(�)

= `[y(�)]!0(�);

and hence

S(a;�; ��) = �

Z ��

0

` [y(�)]!0(�)d� = �

Z ��

0

`[y(�)]!0(�)d�

= �

Z !(��)

0

` [y(!)] d!;

where

y(!) = p�1(!) if ! � p(y�) (57)

y(!) = y� otherwise,
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with p given by (16).

Proof of Lemma 3. By (31), an optimal [�j ]Jj=0 maximizes

!(�) =
JX
j=0

Z �

0

�j�j(x)dx =
JX
j=0

�j�j ;

where �j �
R �
0
�j(x)dx, subject to feasibility. We can then rewrite this problem as

max
�j ;j=0;:::;J

JX
j=0

�j�j ; subject to
JX
j=0

�j = � and 0 � �j � aj=�j for all j = 0; :::; J;

where the constraints follow from feasibility requirement on [�j ]Jj=0. Now, let ej � 0 satisfy
ej�1X
j=0

aj=�j < � �
ejX
j=0

aj=�j :

Since �0 � �1 � ::: � �J , it is optimal to choose �j = aj=�j for all j = 0; :::;ej � 1, �ej = � �
Pej�1

j=0 aj=�j ,

and �ej = 0 for all j > ej. Hence, [��j ]Jj=0 restricted to [0; � ] is optimal. It is also uniquely optimal if
�0 > �1 > ::: > �J :

Proof of Lemma 4. De�ne 
j (a) =
Pj�1

k=0 ak for all j = 1; :::; J + 1 with 
0 (a) = 0. We can then

rewrite (33) as

S(a) = �
JX
j=0

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
`[x(!)]d!;

where x(!) is de�ned in (57) and we have changed the variable from � to ! = !�(�); note that for all

! 2 (
j ;
j+1);

(!�)�1(!) =
(! � 
j)

�j
+ Tj ;

d

d!
(!�)�1(!) =

1

�j
:

Now, let k � 0 be given. We shall compute the derivative of S(a) w.r.t. ak. We will compute it by grouping

the terms inside the summation into three groups: terms with j < k, the term with j = k, and terms with

j > k. Note that S(a) depends on ak through terms 
j and Tj with j > k and hence, for j < k,

@

@ak

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d! = 0;

for j = k;

@

@ak

Z 
k+1


k

e
��

h
(!�
k)

�k
+Tk

i
`[y(!)]d! = �e��Tk`[y(
k)];
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and for j > k,

@

@ak

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d!

= �e��Tj ` [y(
j)] + e
��

h
(
j+1�
j)

�j
+Tj

i
`[y(
j+1)] +

Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d!

= �e��Tj ` [y(
j)] + e��Tj+1`[y(
j+1)] +
Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d!:

Thus, adding the terms up across j, we obtain

@

@ak
S(a) = �

JX
j=k+1

Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d! + e��TJ+1`[y(
J+1)];

where the terms e��Tj `[y(
j)] cancel one another except for the very last one. Equation (36) is obtained by

another change of variable back to � .

Proof of Proposition 10. (1) The equilibrium is solved recursively. The FOC (35) when j = 0

determines a0, which is equivalent to the following (again, by a change of variable):

i = �
JX
j=1

Z 
j+1


j

�

�
1

�j
� 1

�0

�
e
��

h
(!�
j)

�j
+Tj

i
`[y(!)]d! + e��TJ+1`[y(
J+1)]; (58)

where 
j =
Pj�1

k=0Ak by market clearing condition with A0 = a0. First we show that the right side of (58)

is strictly decreasing in a0. Note that 
j is strictly increasing in a0, the range for
(!�
j)
�j

+ Tj as a function

of ! from 
j to 
j+1 does not change when one changes a0, but `[y(!)] is strictly decreasing in ! until it

hits zero and stays there. Thus, the �rst term is strictly decreasing in a0. For the second term, note that

both TJ+1 and 
J+1 are strictly increasing in a0 but the term is strictly decreasing in both TJ+1 and 
J+1.

Now, the right side of (58) is also strictly positive at a0 = 0 provided that �0 > �1 and equal to 0 as a0 goes

to 1. The threshold for the nominal interest rate below which a monetary equilibrium exists is

�� = ���
JX
k=1

(�0 � �k)
�0

Z Tk+1

Tk

e��� ` [y(�)] d� + ��e��TJ+1` [y(TJ+1)] ;

where T1 = 0, and Tj =
Pj�1

k=1Ak=�k for all j 2 f2; :::; J +1g. Given a0, the spreads fsjgJj=1 are determined

by (35), with A0 = a0 and Tj =
Pj�1

k=0Ak=�k for all j 2 f1; :::; J + 1g. From (35) we can compute the

di¤erence between two consecutive spreads:

sj � sj+1 = ���
(�j � �j+1)

�j

Z Tj+2

Tj+1

e��� ` [y(�)] d� :

Hence, sj � sj+1 > 0 requires �j � �j+1 > 0 and y(Tj+1) < y�, i.e., 
j+1 =
Pj

k=0Ak < p(y�).

(2) We can simplify the expression of the velocity of asset j given by (37) as

Vj �
�
R +1
0

�e��x
R x
0
!�0j (�)1f!�(�)<p(y�)gd�dx

Aj
=
�
R +1
0

e���!�0j (�)1f!�(�)<p(y�)gd�

Aj

=
�
R Tj+1
Tj

e����j1f!�(�)<p(y�)gd�

Aj
;
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where the �rst equality changes the order of integration and the second uses the fact that !�0j (�) =

�j1fTj��<Tj+1g. Using the expressions for Tj and Tj+1 we distinguish three cases:

Vj =

8>><>>:
A�1j ��1��je

��Tj
�
1� e�

�
�j
Aj
�

A�1j ��1��je
��Tj

h
1� e�

�
�j
[p(y�)�
j ]

i
0

if p(y�)

8<: � 
j+1
2 (
j ;
j+1)
� 
j

.

Thus, Vj > 0 if and only if p(y�) > 
j . Moreover, for any j with p(y�) > 
j ,

Vj � Vj+1 � A�1j ��1��je
��Tj

�
1� e�

�
�j
Aj
�
�A�1j+1�

�1��j+1e
��Tj+1

�
1� e�

�
�j+1

Aj+1
�

= �e��Tj+1
h
�jA

�1
j ��1

�
e
�
�j
Aj � 1

�
� �j+1A�1j+1�

�1
�
1� e�

�
�j+1

Aj+1
�i

> 0;

where the inequality follows from the fact that

e
�
�j
Aj � 1
�
�j
Aj

> 1 >
1� e�

�
�j+1

Aj+1

�
�j+1

Aj+1
:

(3) It follows directly from (35) and the fact that:

jsj � sj+1j = ���
(�j � �j+1)

�j

Z Tj+2

Tj+1

e���
�
u0 [y(�)]� v0 [y(�)]

v0 [y(�)]

�
d�

� ���
(�j � �j+1)

�j
e��Tj+1

�
u0 [y(Tj+1)]� v0 [y(Tj+1)]

v0 [y(Tj+1)]

�
d� ; (59)

which converges to zero as �!1.

Proof of Proposition 11. Since we focus on equilibria with � = T2, the consumer�s portfolio problem

can be written as

max
(a0;a1)

�ia0 � s1a1 + �fu[y(a0; a1)]� p[y(a0; a1)]g; (60)

where y(a0; a1) is given by (38), and, by � = T2,

y(a0; a1) = p�1 [a0 (1� �1=�0) + �1�� ] ; (61)

a1 = �1�� � �1a0=�0: (62)

Thus, the problem in (60) is reduced to choice of a0 with the following FOC:

�i+ s1
�1
�0
+ ��`(y)

�
1� �1

�0

�
� 0 (with equality if a0 > 0). (63)

Now, market clearing requires a1 = A1, and we look for an equilibrium with a0 > 0 and s1 2 (0; i). Under

these conditions, it follows from (62) and then (61) that

a0 =

�
�� � A1

�1

�
�0; (64)

y = p�1 [a0 (1� �1=�0) + �1�� ] = p�1
�
�0�� �

�0 � �1
�1

A1

�
: (65)
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Moreover, the FOC (63) with equality implies that

s1 =
�0
�1
i� ��

�
�0 � �1
�1

�
`(y): (66)

Given the assumption

�1
�0 � �1

[�0� � p(y2)] < A1 < min

�
�1

�0 � �1
[�0� � p(y1)] ; �1�

�
; (67)

we show that a0 > 0 and s1 2 (0; i). First, since by (67), A1 < �1� , (64) implies that a0 > 0. Given (66),

s1 2 (0; i) if and only if

0 <
�0
�1
i� ��

�
�0 � �1
�1

�
`(y) < i;

that is

i� ��
�
�0 � �1
�0

�
`(y) > 0;

i� ��`(y) < 0:

Recall that y1 satis�es i = �� [(�0 � �1)=�0] `(y1) and y2 satis�es i = ��`(y2), and hence these inequalities

are equivalent to y1 < y < y2. Now, by (65), y > y1 if and only if

�� >
p(y1)�A1

�0
+
A1
�1
;

which is guaranteed by the second inequality in (67). Similarly, by (65), y < y2 if and only if

�� <
p(y2)�A1

�0
+
A1
�1
;

which is guaranteed by the �rst inequality of (67).

Finally, since i = (1 + � � �)=�, @
@� i = 1=� � 1 when � is close to one (or, equivalently, when � is close

to zero). Moreover, for s1 given by (66),

@

@�
s1 =

@

@�
i
@

@i
s1 = (1=�)

�0
�1
:

Now, since i1 = (i� s1)=(1 + s1) and since s1 is close to zero as � is close to zero and � is close to zero,

@

@�
i1 =

(1 + s1)
@
@� i�

@
@� s1(1 + i)

(1 + s1)2
� 1� �0

�1
:

Proof of Proposition 12. (1) Assume i0 = i1 = i. The two FOCs (41) and (42) hold at equality if

and only if � = 0. Hence, y solves u0(y)=v0(y) = 1 + i=��. The negotiability constraint is slack if

et�1;tA0;t

�0
+
�1;tA1;t

�1
� �� ;
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where we used that a0 = �0A0 and a1 = �1A1 by market clearing. Moreover, the outcome of the negotiation

is

et�1;tA0;t + �1;tA1;t = p(y):

Solving for �1;t = p(y)= (etA0;t +A1;t) and substituting into the negotiability constraint we obtain:

p(y)

etA0;t +A1;t

�
etA0;t
�0

+
A1;t
�1

�
� �� :

We rearrange the inequality to obtain:

A1;t
etA0;t +A1;t

� �1
�0 � �1

�0�� � p(y)
p(y)

:

There exists a et > 0 such that this inequality holds i¤ �0���p(y) > 0, and this is the necessary and su¢ cient

condition for both currency to be valued in equilibrium. Moreover, given that the left side is decreasing in

et, if the inequality holds for et = 0, then it holds for all et > 0. This is the case if p(y) � �1�� . If p(y) > �1��

then there is a lowest value for et consistent with the inequality. This value e is such that the inequality

holds at equality.

(2) We have seen that for both currencies to be valued we need (44), which determines y. Equilibrium

then requires a0=�0 + a1=�1 = �� and p(y) = a0 + a1, which determine a0 and a1:

a1 =
�1

�0 � �1
[�0�� � p(y)]

a0 =
�0

�0 � �1
[p(y)� �1�� ] :

Thus, to have both a0 > 0 and a1 > 0, it is necessary and su¢ cient that

�1�� < p(y) < �0�� :

This condition can be rewritten as �� 2 (��0; ��1) where ��0 = p(y)=�0, ��1 = p(y)=�1. It is immediate from (44)

that @y=@i0 < 0 and @y=@i1 > 0. Similarly, @y=@� > 0 and @y=@� > 0 which from (45) gives @et=@� > 0

and @et=@� > 0.

Appendix B: Proof of Propositions 1 and 5, and Extensions

As assumed in the main text, the number of bargaining rounds, N , is even, and the producer is the �rst

to make an o¤er while the consumer is the last. We obtain essentially the same results for the other cases

(either N is odd or the producer is making the last o¤er), as discussed in the proof. Here we also normalize

ub0 = us0 = 0. Also, with no loss of generality, we normalize � to be one.
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We de�ne intermediate payo¤s as the utilities that the players would enjoy based on the agreements

reached up to some round n 2 f1; :::; Ng. Let (yn; pn) denote the cumulative o¤ers that are agreed upon up

to round n. Feasibility requires 0 � pn�pn�1 � z=N and 0 � yn�yn�1 for all n = 1; :::; N and p0 = y0 = 0.

From (3) and (4), we have ubn = u (yn) � pn and usn = �v (yn) + pn: The payo¤s over terminal histories

are simply ubN and usN . If we restrict y 2 [0; y�], then there is a one-to-one correspondence between the

intermediate allocation (y; p) and the intermediate payo¤ (ub; us) such that H(ub; us; p) = 0:

The rest of the section consists in proving Proposition 1 followed by two extensions: one with explicit

negotiation time limit and the other with asymmetric bargaining powers, and we give the proof of Proposition

5 in the end. The proof contains four parts: the �rst gives a full characterization of the equilibrium payo¤s

of any subgame; the second gives equilibrium intermediate payo¤s; the third proves uniqueness; the fourth

characterize the solution as N goes to in�nity.

Final equilibrium payo¤s

To solve the game, we need to solve all possible subgames. A subgame is characterized by the intermediate

payo¤s, denoted by (ub0; u
s
0) with the corresponding allocation denoted by (y0; p0), and the number of rounds

remaining for bargaining, denoted by J . That is, the subgame begins at round N � J + 1, with the

intermediate payo¤ (ub0; u
s
0) that results from the bargaining in the �rst N �J rounds. (The entire game has

(ub0; u
s
0) = (0; 0) and J = N .) Feasibility requires p0 � (N � J)z=N , and we only consider y0 < y� so that

there are still gains from trade to be exploited. Our �rst lemma describes the �nal payo¤s of such a game.

Let S(y) = u(y)� v(y) and S� = S(y�).

Lemma 6 Consider a game [(ub0; u
s
0); J ] with 0 � ub0 + us0 < S�, and p0 = u[S�1(ub0 + us0)] � ub0 = us0 +

v[S�1(ub0+u
s
0)]: Equilibrium �nal payo¤s, (eubJ ; eusJ), correspond to the last term of the sequence, f(eubj ; eusj)gJj=0,

de�ned as (eub0; eus0) = (ub0; us0),
H(eubj ; eusj�1; p0 + jz=N) = 0 and eusj = eusj�1; for j � 1 odd; (68)

H(eubj�1; eusj ; p0 + jz=N) = 0 and eubj = eubj�1; for j � 2 even: (69)

The proof of Lemma 6 uses backward induction. When J = 1, the game [(ub0; u
s
0); 1] is a standard take-

it-or-leave-it o¤er game (with the consumer making the o¤er). In equilibrium, the consumer makes an o¤er

that leaves the producer indi¤erent between rejecting or accepting, with the �nal payo¤ to the producer

eus1 = us0. Taking this as given, the consumer spends up to z=N units of assets so that his �nal payo¤ eub1
satis�es H(eub1; us0; p0 + z=N) = 0. (Note that the buyer will spend exactly z=N unless y� is achieved with a

slack liquidity constraint.) This proves (68) with J = 1.
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Now consider J = 2, and the producer makes the �rst o¤er. If the consumer rejects the o¤er, the

subgame becomes [(ub0; u
s
0); 1], and the consumer can guarantee himself a �nal payo¤ of eub1, which we call

the consumer�s reservation payo¤ . Take this as given, the producer�s o¤er is acceptable as long as the o¤er

leads to a consumer �nal payo¤ no less than eub1. Thus, the producer�s o¤er maximizes his �nal payo¤, us2,
subject to ub2 � eub1. Equivalently, the producer �nal payo¤ eus2 solves H(eub1; eus2; p0 + 2z=N) = 0. This proves
(69) with J = 2. We illustrate this logic in Figure 14.
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0 ub0 eub1 ub

eus1

us

-

-

6

0 ub0 eub1 =eub2
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6

Figure 14: Construction of eub1 and eus2
We continue this argument by induction. Suppose that the �nal payo¤s are given by (68) and (69) for any

game [(ub0; u
s
0); J � 1] with J � 3 and consider a game [(ub0; us0); J ] with J odd and the consumer is making

the �rst o¤er. If the producer rejects the o¤er, his reservation payo¤ would be eusJ�1. Following the same
logic, the consumer�s o¤er maximizes his �nal payo¤ uJb subject to the constraint that the producer�s �nal

payo¤ is no less than his reservation payo¤, eusJ�1. Thus, the �nal payo¤s in the game [(ub0; us0); J ], denoted
by (eubJ ; eusJ), solve H(eubJ ; eusJ�1; p0 + Jz=N) = 0 and eusJ = eusJ�1. The case for J even is similar. This proves
(68) and (69) for J .

Before we proceed, we give some comments on how to handle the case when the �rst best is reached at

some point of the game. Once we reach y�, that is, once eubj + eusj = u(y�)� v(y�), the sequence f(eubj ; eusj)gJj=0
is constant afterwards and in equilibrium there is no trade in rounds after j. Note that this is consistent

with our de�nition of simple SPE. Thus, we may only consider the case where

eubJ�1 + eusJ�1 < S�: (70)

Equilibrium Intermediate Payo¤s

We now construct the sequence of intermediate payo¤s (and the corresponding allocations and o¤ers) that

will lead to �nal payo¤s. We emphasize that the sequence f(eubj ; eusj)gJj=0 used to construct the �nal payo¤s
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is distinct from the sequence of intermediate payo¤s, as we will illustrate shortly. To do so, we expand the

notation slightly to explicate the recursive nature of the sequence f(eubj ; eusj)gJj=0. As mentioned, at each step
according to (68)-(69), the next payo¤ is computed by either a rightward or upward shift to the next Pareto

frontier. Formally, we de�ne two operators, Fr(ub; us) and Fu(ub; us) given by

Fr(u
b; us) = (ub

0
; us0) such that us0 = us and H(ub

0
; us;p+ z=N) = 0; (71)

Fu(u
b; us) = (ub

0
; us0) such that ub

0
= ub and H(ub; us0; p+ z=N) = 0; (72)

where p = u[S�1(ub + us)]� ub. The operator Fr(ub; us) moves from (ub; us) to the next Pareto frontier by

a rightward shift, and Fu(ub; us) moves upward. It then follows directly from (68) and (69) that, for all j

even,

(eubj+1; eusj+1) = Fr(eubj ; eusj); (73)

(eubj+2; eusj+2) = Fu(eubj+1; eusj+1) = (Fu � Fr)(eubj ; eusj): (74)

Our construction of equilibrium intermediate payo¤s follows backward induction from the �nal payo¤s

constructed in Lemma 6. Consider a game [(ub0; u
s
0); J ] with J even. Lemma 6 shows that the �nal payo¤s to

the agents are given by (eubJ ; eusJ). Let (bubJ�1; busJ�1) denote the equilibrium intermediate payo¤ for the agents

at the end of round-(J � 1) bargaining. Applying Lemma 6 to the game [(bubJ�1; busJ�1); 1], the equilibrium
payo¤ to that game is given by Fr(bubJ�1; busJ�1). Thus, subgame perfection requires

Fr(bubJ�1; busJ�1) = (eubJ ; eusJ): (75)

The solution to (75) is to move from (eubJ ; eusJ) leftward to the next Pareto frontier: formally, it is given by
H[bubJ�1; eusJ ; p0 + (J � 1)z=N ] = 0; busJ�1 = eusJ : (76)

In general, the same argument shows that the equilibrium intermediate payo¤ at the end of round-(J�j)

bargaining, denoted by (bubJ�j ; busJ�j), must satisfy
(Fu � Fr)j=2(bubJ�j ; busJ�j) = (eubJ ; eusJ) for j even; (77)

Fr[(Fu � Fr)(j�1)=2(bubJ�j ; busJ�j)] = (eubJ ; eusJ) for j odd:
According to (77), for j even, if we start with (bubJ�j ; busJ�j), it should reach the �nal payo¤s, (eubJ ; eusJ), by
j=2 rightward and upward shifts to next Pareto frontiers. Now, by repeated use of (74), we have that

(bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j) for all j even. For j odd, if we start with (bubJ�j ; busJ�j), it should reach the �nal
payo¤s, (eubJ ; eusJ), by (j�1)=2 rightward and upward shifts to next Pareto frontiers, plus one more rightward
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Figure 15: Backward induction

shift. Hence, (eubJ�j ; eusJ�j) can be obtained from (eubJ ; eusJ) by �rst a leftward shift to the previous Pareto
frontier, followed by (j � 1)=2 downward and leftward shifts to previous frontiers. Figure 15 illustrates this

process for j = 2. We have the following lemma.

Lemma 7 Consider a game [(ub0; u
s
0); J ] be given with J even that satis�es (70). There is a unique se-

quence, f(bubJ�j ; busJ�j)gJ�1j=0 , with corresponding sequence of allocation denoted by fbyJ�jgJ�1j=0 , possibly except

for (bubJ�1; busJ�1), that satis�es (77), which also enjoys the following properties:
bubJ�j > bubJ�j�1 for all j = 0; :::; J � 2; bub1 > ub0; (78)

busJ�j > busJ�j�1 for all j = 1; :::; J � 2; bus1 > us0; (79)

byj > byj�1 for all j = 2; :::; J ; by1 > y0: (80)

The proof of Lemma 7 is based on induction on j and uses the fact that u(y)�v(y) is strictly concave. The

proof is rather straightforward but tedious and the detailed proof is available upon request. Moreover, since

(bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j) for all j even, (78) and (79) imply that the two sequences, f(eubj ; eusj)gJ�1j=1 and

f(bubJ�j ; busJ�j)gJ�1j=1 in fact nests one another, and hence, if one sequence converges to some limit, the other

also converges to the same limit. We also remark that while we have assumed J to be even, an analogous

lemma for J odd holds as well. In that case, (bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j) for all j odd, but we need to
compute (bubJ�j ; busJ�j) for j even with an alternative sequence analogous to the one we constructed for the
case with J even and j odd.

Uniqueness of SPE

Here we prove our uniqueness claim. First we show that, for any subgame, [(ub0; u
s
0); J ], the equilibrium �nal

payo¤s in any SPE is given by (68)-(69), denoted by (eubJ ; eusJ). For J = 1 this is the standard ultimatum game
59



and the uniqueness is standard. Suppose that we have uniqueness for J � 1, J � 2. Then, �x a SPE and

consider the game at �rst bargaining round, and, without loss of generality, assume that producer is making

an o¤er and J is even. We show that the consumer can guarantee a �nal payo¤ of eubJ and the producer
can guarantee eusJ at the �rst round. First, by rejecting the producer o¤er, by the induction hypothesis, the
unique equilibrium payo¤ to the consumer is eubJ�1 = eubJ , and hence any o¤er that leads to a �nal payo¤
lower than eubJ will be rejected. For the consumer, Lemma 7 shows that there exists a unique intermediate
payo¤, (ub1; u

s
1), such that Fr � (Fu �Fr)(J�2)=2(ub1; us1) = (eubJ ; eusJ), and such intermediate payo¤ is achievable

with some o¤er (y1; d1). By o¤ering (y1+ "; d1) for " small the producer can guarantee consumer acceptance

and hence, taking " to zero, the producer can guarantee a �nal payo¤ of eusJ . Since the payo¤s, (eubJ ; eusJ),
lie on the Pareto frontier achievable by the two agents with total assets the consumer has, and each can

guarantee the payment, this �nal payo¤ is unique.

Now we show that the intermediate payo¤s we constructed are unique in a simple SPE. Note �rst that in

a simple SPE, the game e¤ectively ends when active rounds end. Let J be the number of active rounds and

the �nal payo¤s are given by (eubJ ; eusJ), and, by backward induction, (77) must hold. Lemma 7 implies that
there is a unique solution to that except for (bubJ�1; busJ�1). However, that payo¤ can be pinned down by the
fact that buyer has to spend z=N in a simple SPE in round J � 1. Finally, when the output corresponding

to (eubJ ; eusJ) is less than y�, then J = N , and the solution to (77) is unique for all j. Since y� is not achievable

in any subgame, it follows that the SPE is unique.

Convergence to Gradual Nash Solution

We consider convergence of games with N even. The limit will be the same for N odd and hence we have

convergence. Here we show that the limit intermediate payo¤s converge as N approaches in�nity in simple

SPE in the following sense. Now, for each N and each n 2 f1; 2; : : : ; Ng, de�ne

[ubN (�); u
s
N (�)] = (u

b
n; u

s
n) if � 2 [(n� 1)z=N; nz=N);

where (ubn; u
s
n) is an equilibrium intermediate payo¤ in the game with N rounds. We then show that

[ubN (�); u
s
N (�)] converges (pointwise) to [u

b(�); us(�)], the solution to (6) and (7).

As we have seen, the sequence of intermediate equilibrium payo¤s, f(bubn; busn)gNn=1, satis�es (bubn; busn) =
(eubn; eusn) for n even. Consider two bargaining rounds, n � 1 and n + 1, where n is an odd number. So,
(eubn�1; eusn�1) and (eubn+1; eusn+1) are corresponding equilibrium intermediate payo¤s.

Fix some � and let nz=N ! � as N goes to in�nity. Let �ub = eubn+1�eubn�1 (note that eubn+1 = eubn) denote
the buyer�s incremental payo¤s (on the equilibrium path) in rounds n�1 and n+1, and �us = eusn+1� eusn�1
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(note that eusn = eusn�1) denote the producer�s incremental payo¤ (on the equilibrium path) in rounds n � 1

and n+ 1. Similarly, let �z = 2z=N . Then we have

H(eubn�1; eusn�1; n� 1N
z) = 0 (81)

H(eubn�1 +�ub; eusn�1; n� 1N
z +

�z

2
) = 0 (82)

H(eubn�1 +�ub; eusn�1 +�us; n� 1N
z +�z) = 0: (83)

According to (81) and (82), the producer�s intermediate payo¤ is unchanged at eusn�1 while the consumer�s
intermediate payo¤ increases by �ub. The amount of assets up for negotiation on the nth frontier are nz=N .

According to (83), at the end of round n+1 the intermediate payo¤s are obtained by moving vertically from

the nth frontier to the (n+ 1)th frontier (since n+ 1 is even).

A �rst-order Taylor series expansion of (82) in the neighborhood of (ub; us; �) =
�eubn�1; eusn�1; n�1N z

�
yields:

H(eubn�1 +�ub; eusn�1; nN z) = H1�u
b +H3

�z

2
+ o(�ub) + o(

1

N
);

where limN!1;nz=N!�
o(�ub)
�ub

= limN!1No( 1N ) = 0, we used that H(eubn�1; eusn�1; n�1
N z) = 0 from (81),

and the partial derivatives H1, H2, and H3 are evaluated at
�eubn�1; eusn�1; n�1N z

�
. Similarly, a �rst-order

Taylor series expansion of (83) yields

H(eubn�1 +�ub; eusn�1 +�us; n+ 1N
z) = H1�u

b +H2�u
s +H3�z + o(�u

b) + o(�us) + o(
1

N
);

where limN!1;nz=N!�
o(�ub)
�ub

= limN!1;nz=N!�
o(�us)
�us = limN!1No( 1N ) = 0. Using that H = 0 for

payo¤s on the Pareto frontiers, we obtain that

H1�u
b + o(�ub) = �H3

�z

2
+ o(

1

N
);

H1�u
b + o(�ub) +H2�u

s + o(�us) = �H3�z + o(
1

N
);

o(�ub) +H2�u
s + o(�us) = �H3

�z

2
+ o(

1

N
):

From the �rst one and rearranging terms, we obtain

�ub

�z
= � H3

2H1
+
o(�ub)

H1�z
+

o( 1N )

H1�z
:

Note that

lim
N!1

o( 1N )

H1�z
=
o( 1N )N

H1z
= 0 and lim

N!1

o(�ub)

H1�z
= lim

N!1

o(�ub)

H1z�ub
(�ubN) = 0;

where

�ubN = (eubn+1 � eubn�1)N 2 [[1� v0(eyn+1)=u0(eyn+1)]z; [1� v0(eyn�1)=u0(eyn�1)]z]
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and hence it limit exists and is bounded away from zero by the concavity of the function S(�). Thus,

@ub

@�
= lim

N!1

�ub

�z
= �1

2

H3

H1
= �1

2

@H=@�

@H=@ub
:

Similarly, combining these two equations and rearranging, we obtain

�us

�z
= � H3

2H2
+
o(�ub)

H2�z
+
o(�us)

H2�z
+

o( 1N )

H2�z
:

By the same arguments, we have

@us

@�
= lim

N!1

�us

�z
= �1

2

H3

H2
= �1

2

@H=@�

@H=@us
:

These correspond to (6) and (7).

Extensions

Here we introduce a time frame within which the negotiation can occur. Suppose that the two players are

given a speci�c amount of time, � , to negotiate their trades. Each unit of the asset takes 1=� units of time

and hence the maximum amount of assets that can be traded is ��. Our target is the continuous time model

but here we provide a discrete time foundation. So suppose that there are M rounds of bargaining, and

hence each round of bargaining takes � = �=M units of time and in each round at most �� units of assets

can be put up for negotiation.

Let z be the consumer�s asset holding. If z � ��, then the game is exactly the same as in the last section

with asset holding z0 = ��. So suppose that z < ��. For simplicity we assume that there exists N such that

N = z
�� < M , and hence it takes exactly N rounds to negotiate the whole asset holdings, and at each round

up to z=N units of assets can be negotiated. As before, we use (yn; pn) to denote cumulative o¤ers accepted

up to round n.

Given these background assumptions, we now analyze the game. As before, we consider the case where

the consumer makes the very last o¤er, at round M . We denote such a game by (z;M; � ; �). The following

is our proposition.

Proposition 13 The game (z;M; � ; �) has a unique SPE �nal payo¤s that coincide with the �nal payo¤ of

the game [(ub0; u
s
0); N ] with u

b
0 = 0 = us0 as constructed in Lemma 6, where N = z

�� .

We prove this by induction. Indeed, if N = M , then the result follows directly from Lemma 6. Thus

we shall prove this by induction on M � N . For this exercise we shall �x z and N , and increase M .

Notice that for any M , once we reach round-(M �N + 1), we are in the game [(ubM�N ; u
s
M�N ); N ], where
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(ubM�N ; u
s
M�N ) is the intermediate payo¤s reached at the end of round-(M � N). As mentioned, when

M�N = 0, (ubM�N ; u
s
M�N ) = (0; 0) and hence the equilibrium �nal payo¤s are given by (~u

b
N ; ~u

s
N ) computed

by (68)-(69).

Suppose that N is even. Now consider M = N + 1 and hence the consumer is the �rst to make the

o¤er. Then, at the �rst stage, the producer can secure a �nal payo¤ of ~usN by rejecting any o¤er from the

consumer. Moreover, we also know that in this game, any �nal payo¤ (ub; us) must satisfy

H(ub; us; z) � 0: (84)

Since there is no other pair of �nal payo¤ (ub; us) that satis�es both (84) and that ub > ~ubN and us � ~usN , it

follows that it is optimal for the consumer to o¤er (0; 0) at the �rst stage, and hence (~ubN ; ~u
s
N ) is achievable;

moreover, it is the unique equilibrium �nal payo¤, as in any equilibrium we would have us � ~usN and ub � ~ubN .

Suppose, by induction, that the result holds for some M � 1, M > 0. Then consider the game with M

stages and suppose that M is even and hence the producer is the �rst to make the o¤er. By induction, we

know that the consumer can secure a �nal payo¤ of ~ubN by rejecting any o¤er form the producer. As before,

we also know that in this game, any �nal payo¤ (ub; us) must satisfy (84). The rest of the argument then

follows.

Note that there are other SPEs sharing the same SPE payo¤s. For example, it is also an SPE that they

�nish bargaining in the initial N active rounds and then there is no trade in the remaining M �N rounds.

Asymmetric bargaining powers

Here we revise our game to support gradual Nash solution with asymmetric bargaining power, denoted by

�. The parameter � a¤ects the game as follows. We assume that the number of rounds is an even number

N , and the producer is the one making the �rst o¤er and the consumer is making the last o¤er.

1. In each round n 2 f1; 3; : : : ; N � 1g, it is the producer�s turn to make an o¤er, with asset transfer

within the range [0; 2(1� �)z=N ]; the consumer then decides to accept or reject the o¤er.

2. In each round n 2 f2; 4; : : : ; Ng, it is the consumer�s turn to make an o¤er, with asset transfer within

the range [0; 2�z=N ]; the producer then decides to accept or reject the o¤er.

Note that at the end of odd round n, the maximum cumulative asset transfer is [2(n� 1)+2(1� �)]z=N ,

and at the end of even round n, the maximum cumulative asset transfer is nz=N , for all n = 2; 4; :::; N .

As before, to solve the game, we need to solve all possible subgames. Also, such subgame can still be

characterized by [(ub0; u
s
0); J ], where (u

b
0; u

s
0) is the intermediate payo¤ at the beginning of the subgame and

J is the number of remaining bargaining rounds.
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Proposition 14 Fix some � 2 [0; 1]. There exists a SPE in each alternating-ultimatum o¤er game, and all

SPE share the same �nal payo¤s. When the output level corresponding to the �nal payo¤s is less than y�,

the SPE is unique and is simple; otherwise, there is a unique simple SPE. Moreover, in any simple SPE, the

intermediate payo¤s, f(ubn; usn)gn=1;2;:::;N , converge to the solution [ub(�); us(�)] to the di¤erential equations

(13) and (14) as N approaches 1 and [(n� 1) + 2(1� �)]z=N or nz=N approaches � .

Note that Proposition 1 is a special case of Proposition 14 with � = 1=2. However, the proof of Proposition

14 follows exactly the same outline as that of Proposition 1. In particular, we will use the same technique to

compute the �nal payo¤s for any subgame, but with necessary modi�cation to accommodate the fact that

the consumer has control over � fraction of assets to be negotiated every two rounds. As before, we can

denote an arbitrary subgame by [(ub0; u
s
0); J ] with 0 � ub0 + u

s
0 < u(y�)� v(y�).

The �nal payo¤ is computed as follows. De�ne f(eubj ; eusj)gJj=0 as (eub0; eus0) = (ub0; us0), and
H(eubj ; eusj�1; p0 + 2�z=N + (j � 1)z=N) = 0; and eusj = eusj�1; for j � 1 odd, (85)

H(eubj�1; eusj ; p0 + jz=N) = 0; and eubj = eubj�1; for j � 2 even, (86)

where p0 = u[S�1(ub0 + u
s
0)]� ub0. Below we show that the �nal equilibrium payo¤s for the agents are given

by (eubJ ; eusJ).
The logic behind this construction is exactly the same as the symmetric case, except for the fact that the

consumer and the producer controls di¤erent shares of assets up for negotiation. In particular, when J = 1,

the game [(ub0; u
s
0); 1] is a standard take-it-or-leave-it o¤er game (with the consumer making the o¤er). Since

the consumer can o¤er up to additional 2�z=N units of assets, the �nal payo¤ is computed by a rightward

shift to next Pareto frontier with intermediate payments p0 + 2�z=N , as in (85) with j = 0. When J = 2,

the producer makes the �rst o¤er and take the �nal payo¤ for consumer in case he rejects the o¤er as given.

Note that with J = 2 the �nal Pareto frontier has intermediate payment of p0+2z=N , as in (86) with j = 0.

To compute the intermediate payo¤s, we �rst de�ne the functions Fr and Fu analogous to (71) and (72):

Fr(u
b; us) = (ub

0
; us0) such that us0 = us and H(ub

0
; us; p+ 2�z=N); (87)

Fu(u
b; us) = (ub

0
; us0) such that ub

0
= ub and H(ub; us0; p+ 2(1� �)z=N); (88)

where p = u[S�1(ub+us)]�ub. Now we are ready to explain how to compute intermediate payo¤s. Consider

a game [(ub0; u
s
0); J ] with J even. Using the same backward induction argument as in the symmetric case, if

(bubJ�1; busJ�1) is the equilibrium intermediate payo¤ for the agents at the end of round-(J � 1) bargaining,

then

Fr(bubJ�1; busJ�1) = (eubJ ; eusJ): (89)
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As before, the solution would be obtained by a leftward shift, but, under �, to the lower Pareto frontier with

intermediate payment lowered by 2�z=N ; that is,

H(bubJ�1; eusJ ; p0 + Jz=N � 2�z=N) = 0; busJ�1 = eusJ : (90)

Note that in this case, (bubJ�1; busJ�1) and (eubJ�1; eusJ�1) do not lie on the same Pareto frontier unless � = 1=2.
In general, we can still use (77) to compute the equilibrium intermediate payo¤at the end of round-(J�j)

bargaining, denoted by (bubJ�j ; busJ�j), with Fr and Fu de�ned by (87)-(88), and we have an analogous result
to that of Lemma 7 for the existence and uniqueness of such a sequence. For j even the terms are obtained

as before. For j odd, we need a second sequence, f(ubJ�j ; usJ�j)gJ�1j=0 as follows: (u
b
J ; u

s
J) = (eubJ ; eusJ), and

H(ubJ�j ; u
s
J�j+1; p0 + (J � j � 1)z=N + 2(1� �)z=N) = 0; and usJ�j = usJ�j+1 for j � 1 odd, (91)

H(ubJ�j+1; u
s
J�j ; p0 + (J � j)z=N) = 0; and ubJ�j = ubJ�j+1 for j � 1 even. (92)

Graphically, for j odd, (ubJ�j ; u
s
J�j) is obtained from (ubJ�j+1; u

s
J�j+1) by moving toward left to the next

lower Pareto frontier, with a decrease of incremental transfer of 2�z=N ; for j even, (ubJ�j ; u
s
J�j) is obtained

from (ubJ�j+1; u
s
J�j+1) by moving downward to the next lower Pareto frontier, with a decrease of incremental

transfer of 2(1 � �)z=N . Note that (ubJ�1; u
s
J�1) = (bubJ�1; busJ�1) given by (90). Note also that, in contrast

to the symmetric case, (eubJ�j ; eusJ�j) is situated in the same Pareto frontier as (ubJ�j ; usJ�j) if and only if j
is even; for j odd, (ubJ�j ; u

s
J�j) lies on a di¤erent frontier.

Now we show that the intermediate payo¤s converge to the same limit. As in the symmetric case, consider

convergence of games with N even. The limit will be the same for N odd and hence we have convergence.

By the above arguments we have that the sequence of intermediate equilibrium payo¤s at the end of each

round is given by f(bubn; busn)gNn=1 with (ub0; us0) = (0; 0), and that (bubn; busn) = (eubn; eusn) for n even. Consider two
bargaining rounds, n and n + 2 with n even. So, (eubn; eusn) and (eubn+2; eusn+2) are corresponding equilibrium
intermediate payo¤s. Let �ub = eubn+2� eubn denote the buyer�s incremental payo¤s (on the equilibrium path)
in rounds n and n+ 2, and �us = eusn+2 � eusn denote the producer�s incremental payo¤ (on the equilibrium
path) in rounds n and n+ 2. Let �z = 2z=N be the corresponding change in assets. Then we have

H(eubn; eusn; nz=N) = 0 (93)

H(eubn +�ub; eusn; ��z + n

N
z) = 0 (94)

H(eubn +�ub; eusn +�us; nz=N +�z) = 0: (95)

A �rst-order Taylor series expansion of (94) in the neighborhood of (ub; us; �) =
�eubn; eusn; nN z� yields:

H(eubn +�ub; eusn; ��z + n

N
z) = H1�u

b +H3��z + o(�u
b) + o(

1

N
);
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where limN!1;nz=N!�
o(�ub)
�ub

= limN!1No( 1N ) = 0, we used that H(eubn; eusn; nN z) = 0 from (93), and

the partial derivatives H1, H2, and H3 are evaluated at
�eubn; eusn; nN z�. Similarly, a �rst-order Taylor series

expansion of (95) yields

H(eubn +�ub; eusn +�us; n+ 2N
z) = H1�u

b +H2�u
s +H3�z + o(�u

b) + o(�us) + o(
1

N
);

where limN!1;nz=N!�
o(�ub)
�ub

= limN!1;nz=N!�
o(�us)
�us = limN!1No( 1N ) = 0. Using that H = 0 for

payo¤s on the Pareto frontiers, we obtain that

H1�u
b + o(�ub) = �H3��z + o(

1

N
);

H1�u
b + o(�ub) +H2�u

s + o(�us) = �H3�z + o(
1

N
);

H2�u
s + o(�us) + o(�ub) = �(1� �)H3�z + o(

1

N
)

From the �rst equation with rearranging, we obtain

�ub

�z
= ��H3

H1
+
o(�ub)

H1�z
+

o( 1N )

H1�z
:

Similarly, from the third equation with rearranging, we obtain

�us

�z
= �(1� �)H3

H2
+
o(�ub)

H2�z
+
o(�us)

H2�z
+

o( 1N )

H2�z
:

Thus, we have

@ub

@�
= lim

N!1;2n=N!�

�ub

�z
= ��H3

H1
= �� @H=@�

@H=@ub
;

@us

@�
= lim

N!1;2n=N!�

�us

�z
= �(1� �)H3

H2
= �(1� �) @H=@�

@H=@us
:

Proof of Proposition 5

The proof follows the same logic as that of Proposition 1, and we only highlight key di¤erences. Let z be

consumer�s asset holding. As before, we assume that consumer is the last to make an o¤er. The �nal payo¤

can be characterized in the same way as Lemma 6, but with some modi�cations. First, the function that

characterizes the Pareto frontier is now H(ub; us; �y) given by (19). The �nal payo¤s are computed as follows.

Consider a game [(ub0; u
s
0); J ] with 0 � ub0 + us0 < u(y�)� v(y�). De�ne f(eubj ; eusj)gJj=0 as (eub0; eus0) = (ub0; us0),

and

H(eubj ; eusj�1; y0 + jy�=N) = 0; and eusj = eusj�1; for j � 1 odd, (96)

H(eubj�1; eusj ; y0 + jy�=N) = 0; and eubj = eubj�1; for j � 2 even, (97)
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where y0 = S�1(ub0 + us0). The key di¤erence from Lemma 6 is that, since the payment is constrained by

the total asset holding, z, the sequence may become constant before J . We use ~J to denote the number of

rounds needed to reach the �nal payo¤. It only requires minimal modi�cation when ~J < J and that can be

handled in the same way as in Proposition 13, and construct a SPE in which no trade occurs until round

J � ~J + 1. We also need to compute the intermediate payo¤s. Since we focus on equilibria where no trade

occurs until round J � ~J + 1, we can assume that J = ~J , and suppose that J is even. For each j < J odd,

de�ne busJ�j = eusJ�j+1, and de�ne bubJ�j be such that
bubJ�j + busJ�j = u(eyJ�j)� v(eyJ�j):

For each j � J � 2 even, de�ne

(bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j):
Since the di¤erence between the Pareto frontiers is decreasing, the intermediate payo¤ always lies to the

northwest of the starting point.

Back to the original game with N rounds, we use ~N to denote the number of rounds needed to �nish

bargaining, which is an endogenous object. Convergence of intermediate payo¤s follows exactly the same

arguments as before, but we also need to consider convergence of ~N=N . The equations corresponding to

(81)-(83) now should be modi�ed to

H(eubn�1; eusn�1; n� 1N
y�) = 0 (98)

H(eubn�1 +�ub; eusn�1; n� 1N
y� +

�y

2
) = 0 (99)

H(eubn�1 +�ub; eusn�1 +�us; n� 1N
y� +�y) = 0; (100)

and we require n � ~N , the number of rounds of negotiation needed before the assets are depleted. The rest

of the argument is similar.

We also need to give the convergence result of ~N . Given z, (96)-(97) imply that ~N is determined by

u

 
~N

N
y�

!
�

X
j� ~N odd

�
S

�
j

N
y�
�
� S

�
j � 1
N

y�
��

� z (101)

< u

 
~N + 1

N
y�

!
�

X
j� ~N+1 odd

�
S

�
j

N
y�
�
� S

�
j � 1
N

y�
��

:

Now, let �N = ~N=N , and, by concavity of S,

u(�Ny
�)� 1

2
S(�Ny

�) = z +O(1=N);
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where limN!1O(1=N) = 0. Hence, limN!1 �N = � with � = y=y� and

u(y)� 1
2
S(y) = z:

Finally, we show that the solution coincides with the axiomatic solution determined by

ub0(�y) = �1
2

@H(ub; us; �y)=@�y

@H(ub; us; �y)=@ub
(102)

us0(�y) = �1
2

@H(ub; us; �y)=@�y

@H(ub; us; �y)=@us
: (103)

Note that by (19), as long as the payment constraint does not bind, p < z, then us < z � �(�y) and the

equation of the Pareto frontier is linear, at least locally. In that case the gradual solution gives:

ub0(�y) = us0(�y) =
1

2
[u0(�y)� �0(�y)] : (104)

It then follows that the change in the payment over the gradual bargaining path is given by:

ub0(�y) = u0(�y)� @p

@�y
=
1

2
[u0(�y)� �0(�y)] :

Hence,
@p

@�y
=
1

2
[u0(�y) + �0(�y)] :

Integrating from �y = 0 to �y = y, we obtain p(y) = 1
2 [u(y) + �(y)] ; the payment function in the proposition.

We verify that the payment constraint does not bind up to z. Let ey = minfy�; p�1(z)g with p(y) =

1
2 [u(y) + �(y)]. If ey = y�, then it is easy to see that the constraint never binds. Otherwise, for all �y < ey, the
constraint p(�y) � z is not binding and hence the di¤erential equations (102)-(103) apply.

Appendix C: Proof of Proposition 3

We use backward induction to prove Proposition 3.

Round N

Consider the alternating-o¤er game in the last round, N . The cumulated o¤er up to round N is (yN�1; dN�1)

with associated payo¤ (ubN�1; u
s
N�1). So, if no agreement is reached in round N , the terminal payo¤s are

(ubN�1; u
s
N�1). The maximum wealth that can be negotiated at the end of round N is zN = dN�1+z=N . We

will show that at the limit, when �N goes to 1 (the risk of breakdown vanishes), the unique SPE payo¤s of

the subgame starting at the beginning of round N are determined according to the symmetric Nash solution:

max
ubN ;u

s
N

�
ubN � ubN�1

� �
usN � usN�1

�
s.t. H(ubN ; u

s
N ; zN ) = 0: (105)
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The terminal payo¤s maximize the Nash product subject to the constraint that they belong to the Pareto

frontier associated with zN units of wealth. The ratio of the �rst-order conditions give

ubN � ubN�1
usN � usN�1

=
H2(u

b
N ; u

s
N ; zN )

H1(ubN ; u
s
N ; zN )

: (106)

At the optimum the slope of the Nash product is equal to the slope of the Pareto frontier.

We focus on the existence of the SPE and its construction. For simplicity we assume that y� is never

achieved. For the proof of uniqueness, see Rubinstein (1982). When it is his turn to make an o¤er the

consumer proposes the (cumulative) o¤er (yb; db) and the producer proposes (ys; ds). The consumer and the

producer have a reservation surplus to accept o¤ers, ub and us, respectively. The consumer�s o¤er solves:

ubN = max
yb;db

�
u(yb)� db

	
s.t. � �(yb) + db � us and db � zN : (107)

The consumer maximizes his surplus subject to the constraint that his o¤er must generate a surplus for

the producer that is at least equal to us and the o¤er must be feasible, db � zN . Hence, ubN satis�es

H(ubN ; u
s; zN ) = 0. A solution to (107) exists provided that u(y)� v(y) � us where y = minfu�1(zN ); y�g.

The reservation surplus of the producer solves

us = (1� �N )usN�1 + �N [��(ys) + ds] : (108)

If the producer rejects the o¤er, his expected utility is equal to the weighted average of usN�1, if the negotiation

ends, and ��(ys)+ ds if the producer has the opportunity to make a counter-o¤er. Similarly, the producer�s

o¤er solves:

usN = max
ys;ds

f��(ys)� dsg s.t. u(ys)� ds = ub and ds � zN ; (109)

where the reservation surplus of the consumer solves:

ub = (1� �N )ubN�1 + �N
�
u(yb)� db

�
: (110)

Hence, usN satis�es H(ub; usN ; zN ) = 0. A solution to (109) exists provided that u(y) � v(y) � ub where

y = minf��1(zN ); y�g. Substituting ub and us by their expressions given by (108) and (110), the equilibrium

payo¤s, (ubN ; u
s
N ), solve the following system of equations:

H
�
ubN ; (1� �N )usN�1 + �NusN ; zN

�
= 0; (111)

H
�
(1� �N )ubN�1 + �NubN ; usN ; zN

�
= 0: (112)

It is standard to check that for all �N < 1 this system admits a unique solution. See Figure 16. By virtue

of the one-stage-deviation principle, the proposed strategies form a SPE.
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Figure 16: Determination of equilibrium payo¤s

Let us consider the limit as �N approaches to 1. Using a �rst-order Taylor series expansion we can rewrite

(111)-(112) as:

H
�
ubN ; u

s
N ; zN

�
�H2

�
ubN ; u

s
N ; zN

�
(1� �N )

�
usN � usN�1

�
= o[(1� �N )];

H
�
ubN ; u

s
N ; zN

�
�H1

�
ubN ; u

s
N ; zN

�
(1� �N )

�
ubN � ubN�1

�
= o[(1� �N )];

where Hj is the partial derivative with respect to the jth argument, and o[(1� �N )]=(1� �N ) converges to

0 as �N converges to 1. Rearranging the terms and take limits, we obtain:

lim
�N!1

H2

�
ubN ; u

s
N ; zN

� �
usN � usN�1

�
�H1

�
ubN ; u

s
N ; zN

� �
ubN � ubN�1

�
= lim

�N!1
o[(1��N )]=(1��N ) = 0: (113)

This equation coincides with the FOC for (105). Hence, the solution to the alternating-o¤er round game

corresponds to the Nash solution with disagreement points (ubN�1; u
s
N�1).

Terminal payo¤s

We now make the following proposition for the determination of the terminal payo¤s starting from any

arbitrary round, and let N be the total number of rounds. Let the probability that the negotiation continues

at the end of round n be denoted by �n, n = 1; :::; N . When solving the game with N rounds, we take the

limit on the probability of negotiation breakdown. We solve the game by taking �N to one �rst and obtain

the solution to the subgame beginning from round N . Then we solve round N � 1, taking the limit of �N at

1 as given. Then we take �N�1 to one, and so on.

We also need to expand the notation slightly. Let
�
ubn�1; u

s
n�1
�
be a given intermediate payo¤at the begin-

ning of round n, and let dn�1 be the corresponding cumulative transfer of assets; i.e., H
�
ubn�1; u

s
n�1; dn�1

�
=
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0. De�ne F
�
ubn�1; u

s
n�1
�
=
�
ubn; u

s
n

�
to be the solution of

max
ubn;u

s
n

�
ubn � ubn�1

� �
usn � usn�1

�
s.t. H

�
ubn; u

s
n; dn�1 + z=N

�
= 0: (114)

Proposition 15 Consider the subgame starting from the beginning of round n 2 f1; :::; Ng with intermediate

payo¤s,
�
ubn�1; u

s
n�1
�
, where H

�
ubn�1; u

s
n�1; dn�1

�
= 0. Take limits in the following order: �N ! 1, �N�1 !

1,..., �n ! 1. The terminal payo¤s,
�
ubN ; u

s
N

�
, are obtained recursively from

�
ubn�1; u

s
n�1
�
according to:

max
ubn+j ;u

s
n+j

�
ubn+j � ubn+j�1

� �
usn+j � usn+j�1

�
s.t. H

�
ubn+j ; u

s
n+j ; zn+j

�
= 0; j = 0:::N � n; (115)

where zn+j = dn�1 + (1 + j)z=N .

The recursion (115) generates a sequence of payo¤s, f
�
ubn+j ; u

s
n+j

�
gN�nj=0 , where each element,

�
ubn+j ; u

s
n+j

�
,

corresponds to the Nash solution of a bargaining problem with endogenous disagreement points,
�
ubn+j�1; u

s
n+j�1

�
,

and Pareto frontier corresponding to the wealth zn+j . We illustrate this construction in Figure 5 for the

subgame starting in N � 2.

We prove the proposition by induction. We have shown that the proposition holds for round N . We now

show that if the proposition holds for some arbitrary round n, then it holds for round n � 1. Consider the

beginning of round n� 1 with intermediate payo¤s,
�
ubn�2; u

s
n�2
�
, where H

�
ubn�2; u

s
n�2; dn�2

�
= 0. We also

assume that at round n� 1, it is the consumer to make the �rst o¤er.

In order to characterize the outcome of the alternating o¤er bargaining game in round n � 1 we need

to compute the payo¤s in case the negotiation ends without an agreement. In the event of a breakdown in

round n � 1, then the players move to round n but keep the same intermediate payo¤s,
�
ubn�2; u

s
n�2
�
. By

inductive assumption, since the proposition holds for round n, the terminal payo¤s in that subgame, denoted�
ubN�1; u

s
N�1

�
, are given by

�
ubN�1; u

s
N�1

�
= FN�n

�
ubn�1; u

s
n�1
�
, if we take the limits �N ! 1, �N�1 ! 1,...,

�n ! 1, in that order.

Since our induction hypothesis allows us to compute the terminal payo¤s from any intermediate payo¤s

in the beginning of round n, for any outcome from round n � 1, we can compute the continuation value.

First let

HN = f(ubN ; usN ) � 0 : H
�
ubN ; u

s
N ; zN

�
� 0g

be the set of all possible individually rational �nal payo¤s given the initial disagreement point. We use

UbN (ubn�2; usn�2) to denote the set of all terminal payo¤s, (ubN ; usN ), attainable from (ubn�2; u
s
n�2), for which

the corresponding allocation is given by (yn�2; dn�2), according to the induction hypothesis, if an o¤er at
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round n� 1 is accepted:

UbN (ubn�2; usn�2) = fFN�n+1(ubn�1; usn�1) : 9(yn�1; dn�1) � (yn�2; dn�2); dn�1 � dn�2 � z=N

such that ubn�1 = u(yn�1)� dn�1; usn�1 = �v(yn�1) + dn�1g:

Note that UbN (ubn�2; usn�2) � HN is nonempty, as (ubN�1; u
s
N�1) � FN�n+1(ubn�2; u

s
n�2) 2 UbN (ubn�2; usn�2),

which is attained if no trade is o¤ered. Moreover, (ûbN ; û
s
N ) = FN�n+2(ubn�2; u

s
n�2) 2 UbN (ubn�2; usn�2) as

well, which is attained if the o¤er corresponding to (ûbn�1; û
s
n�1) = F (ubn�2; u

s
n�2), denoted by (ŷn�1; d̂n�1),

is o¤ered and accepted. Moreover, since the cumulative o¤er, (ŷn�1; d̂n�1), is interior, i.e., (ŷn�1; d̂n�1) >

(yn�2; dn�2), by continuity, there exists a neighborhood O around (ûbN ; û
s
N ) such that

O \ UbN (ubn�2; usn�2) (116)

is open relative to HN .

Thus, using these terminal payo¤s, the game in round n � 1 can be reduced to the following game: the

two players take turns to make an o¤er (ubN ; u
s
N ) 2 UbN (ubn�2; usn�2). If accepted, the game ends with the

terminal payo¤ (ubN ; u
s
N ). Otherwise, with probability �n�1 the other player makes an o¤er; with probability

1 � �n�1 the game ends with payo¤
�
ubN�1; u

s
N�1

�
. Note that only payo¤s (ubN ; u

s
N ) �

�
ubN�1; u

s
N�1

�
are

relevant, for o¤ers that lead to other payo¤s are dominated by them. We claim that for �n�1 su¢ ciently

large, the equilibrium payo¤s, (ubN ; u
s
N ), solve the following system of equations:

H
�
ubN ; (1� �n�1)usN�1 + �n�1usN ; zN

�
= 0; (117)

H
�
(1� �n�1)ubN�1 + �n�1ubN ; usN ; zN

�
= 0: (118)

First we note that if UbN (ubn�2; usn�2) = HIR
N � f

�
ubN ; u

s
N

�
2 HN :

�
ubN ; u

s
N

�
�
�
ubN�1; u

s
N�1

�
g, then this

follows from the same argument as that for round N . The set HIR
N consists of all individually rational �nal

payo¤s relative to the disagreement point
�
ubN�1; u

s
N�1

�
. Now, since UbN (ubn�2; usn�2) � HN and anything

that is not individually rational is dominated by
�
ubN�1; u

s
N�1

�
, the proof is still valid as long as the �nal

payo¤s correspond to the solutions, [ubN ; (1 � �n�1)u
s
N�1 + �n�1u

s
N ] and

�
(1� �n�1)ubN�1 + �n�1ubN ; usN

�
,

belong to UbN (ubn�2; usn�2). By earlier argument we know that those solutions converge to (ûbN ; ûsN ). Thus,

for �n�1 su¢ ciently large, such solutions also belong to O given by (116). Finally, the fact that the solution

converges to the Nash solution as �n approaches 1 follows exactly the same argument as round N . This

proves that the proposition holds at n� 1. Given that it holds at N , by induction it holds for all n � 0.
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Intermediate payo¤s

We determine the equilibrium terminal payo¤s at the start of the whole game by using the initial condition�
ub0; u

s
0

�
= (0; 0) and (115), i.e.,

max
ubn;u

s
n

�
ubn � ubn�1

� �
usn � usn�1

�
s.t. H

�
ubn; u

s
n;
n

N
z
�
= 0:

We obtain a sequence f
�
ubn; u

s
n

�
gNn=0 where the last term corresponds to the terminal payo¤s. Let�s now

denote f
�
~ubn; ~u

s
n

�
gNn=0 the sequence of intermediate payo¤s along the SPE. We determine this sequence by

backward induction starting from
�
~ubN ; ~u

s
N

�
=
�
ubN ; u

s
N

�
. Consider the alternating o¤er game in round N .

Its solution is given by

�
ubN ; u

s
N

�
= arg max

ubN ;u
s
N

�
ubN � ~ubN�1

� �
usN � ~usN�1

�
s.t. H(ubN ; u

s
N ; z) = 0:

By the de�nition of f
�
ubn; u

s
n

�
gNn=0 it follows that

�
~ubN�1; ~u

s
N�1

�
=
�
ubN�1; u

s
N�1

�
.

Let�s now move to round N � 1. The disagreement point is
�
ûbN�1; û

s
N�1

�
solution to

�
ûbN�1; û

s
N�1

�
= arg max

ubN�1;u
s
N�1

�
ubN�1 � ~ubN�2

� �
usN�1 � ~usN�2

�
s.t. H

�
ubN�1; u

s
N�1;

N � 1
N

z

�
= 0:

Given this disagreement point the terminal payo¤s solve:

max
ubN ;u

s
N

�
ubN � ûbN�1

� �
usN � ûsN�1

�
s.t. H(ubN ; u

s
N ; z) = 0:

It follows that
�
ûbN�1; û

s
N�1

�
=
�
ubN�1; u

s
N�1

�
and hence

�
~ubN�2; ~u

s
N�2

�
=
�
ubN�2; u

s
N�2

�
. We can iterate

this procedure and obtain that
�
~ubn; ~u

s
n

�
=
�
ubn; u

s
n

�
for all n. This then proves (17).

Gradual bargaining: limit as N !1

The FOCs of the Nash problems above give

usn � usn�1
ubn � ubn�1

=
H1

�
ubn; u

s
n;

n
N z
�

H2

�
ubn; u

s
n;

n
N z
� :

Denote � = nz=�N . Divide both the numerator and the denominator of the left side by z=�N and take the

limit as N tends to in�nity to obtain us0(�)=ub
0
(�). This gives:

us0(�)

ub0(�)
=
H1

�
ub� ; u

s
� ; ��

�
H2 (ub� ; u

s
� ; ��)

:

This di¤erential equation coincides with (8).
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Appendix D. Gradual bargaining and prices in OTC markets

In order to illustrate the versatility of our approach we now reinterpret our model as one where agents,

called investors, have idiosyncratic valuations for an illiquid asset that can only be traded through pairwise

meetings, similar to Du¢ e et al. (2005, 2007). At the end of each period, each agent receives an equal

endowment of Lucas trees, 
, that pay o¤ at the end of the following period. The payo¤ from holding !

units of trees is "f(!) where " 2 f"h; "`g is an idiosyncratic valuation with "h > "` > 0. Upon entering the

DM half of the agents draw "h while the other half draw "`. These Lucas trees can only be traded in an

OTC market, through pairwise meetings, in the DM. The e¢ cient trade size between an h�investor and an

`�investor is such that "hf 0(
 + y�) = "`f
0(
� y�).

In accordance with the literature on OTC markets, investors can either meet directly or they can trade

through dealers. Dealers are risk-neutral agents with linear preferences for the numeraire who have access

to a competitive interdealer market in the DM. Upon contact with a dealer, investors can buy and sell

assets at the competitive interdealer price in terms of the numeraire, q, in exchange for the payment of an

intermediation fee, ', also expressed in the numeraire.

Investors, who cannot commit, must accumulate liquid assets to pay for illiquid Lucas trees. The liquid

asset takes the form of �at money with d = 0. The supply of money grows at rate � 2 (� � 1;1),

At+1 = (1+�)At, where new money distributed in a lump-sum fashion. We denote i � (1+ �)(1+�)� 1 as

the cost of holding money. We assume that dealers can commit to deliver the assets they purchase on behalf

of investors in the interdealer market.

The matching technology in the OTC market is described as follows. We denote �u the product of

the probability of drawing a high (low) valuation times the probability of being matched with a low (high)

valuation investor. We denote �d the probability of drawing a high (low) valuation times the probability of

meeting a dealer.

We need to make assumptions on how agents bargain in these di¤erent meetings. For simplicity we

assume that � = 0, which corresponds to the case where the time constraint never binds. In matches

between investors, we follow our approach in Section 5 and assume that agents bargain gradually over the

liquid asset, here �at money. We later compare the equilibrium outcome to the one where agents bargain

gradually over the illiquid asset. In matches between a dealer and an investor, we assume that the investor

sells gradually the asset he is o¤ering, i.e., money in matches with h-investors and the illiquid asset in

matches with `-investors. As shown in Proposition 6, this choice corresponds to each investor�s preferred

agenda.
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Consider a match between an h-investor and an `-investor. The solutions from the previous sections

apply, where we de�ne u(y) � "h [f(
 + y)� f(
)] and �(y) � "` [f(
)� f(
� y)]. It follows that the

payment function for the illiquid asset is

pu(y) =

Z y

0

2"`f
0(
� x)"hf 0(
 + x)

"hf 0(
 + x) + "`f 0(
� x)
dx: (119)

Hence, at the margin, the price of an illiquid asset is

pu0(y) = 2

�
1

"`f 0(
� y)
+

1

"hf 0(
 + y)

��1
:

The price is the harmonic mean of the marginal productivities of the buyer and the producer.

We now turn to a match between an h-investor holding z real balances and a dealer. An allocation, (y; 'a),

speci�es a quantity of assets purchased by the dealer on behalf of the investor and a payment (in real balances)

equal to qy + 'a, where q + 'a=y is interpreted as an average ask price, and 'a is the intermediation fee to

the dealer associated with this ask price. The allocation is subject to the feasibility constraint, qy+'a � z.

(This feasibility constraint di¤ers from the one in Lagos and Zhang (2018) where it is assumed that qy � z

and 'a is �nanced with credit repaid in the CM. This formulation makes their model with linear f and Nash

bargaining more tractable.) The surplus of the investor is ub = "hf(
 + y) � qy � 'a � "hf(
) while the

dealer�s pro�ts are ud = 'a. Applying the gradual bargaining solution where the agenda speci�es that the

h-investor sells his real balances gradually over time, the marginal surplus of the buyer is

ub0(z) =
"hf

0 (
 + y) =q � 1
2

; (120)

if y � ~yhq where "hf
0 �
+ ~yhq � = q and ub0(z) = 0 otherwise. According to (120) the increase in the buyer�s

surplus from an additional unit of real balances is half of the gains that the buyer would enjoy by purchasing

assets in the interdealer market directly. By the de�nition of the buyer�s payo¤, ub0(z) = "hf
0(
+y)@y=@z�1.

Substituting this expression into (120) and integrating, the total payment for y units of assets is

pa(y) = 'a(y) + qy = q

Z y

0

2"hf
0 (
 + x)

"hf 0 (
 + x) + q
dx;

for all y � ~yhq . This payment function is increasing and concave in y. Hence, the average ask price decreases

with trade size and increases with the investor�s valuation, "h.

In a match between an `-investor and a dealer, an allocation, (y; 'b), speci�es the quantity y of assets

purchased by the dealer in exchange for a payment qy � 'b, where q � 'b=y is the average bid price and

'b is the intermediation fee to the dealer associated with this bid price. The investor�s surplus is us =
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"`f(
� y) + qy�'b � "`f(
) and the dealer�s pro�ts are 'b. If the `-investor sells his assets gradually over

time, then the total payment function is given by the egalitarian solution:

pb(y) = qy � 'b(y) = qy + "`f(
)� "`f(
� y)
2

;

for all y � ~y`q where "`f
0 �
� ~y`q� = q. This function is increasing and convex in y. Hence, the average bid

price is increasing in y. The optimal y maximizes "`f(
� y) + pb(y), i.e., assuming an interior solution,

q = "`f
0(
� yd); (121)

where we use yd to denote the amount of assets traded between an `-investor and a dealer. In equilibrium,

this will also be the amount traded between an h-investor and a dealer.

The investor�s optimal choice of real balances, assuming an interior solution, satis�es a generalized version

of (26), i.e.,

i =
�u

2

�
"hf

0(
 + yu)

"`f 0(
� yu)
� 1
�
+
�d

2

"
"hf

0 �
+ yd�
"`f 0(
� yd)

� 1
#
; (122)

where yu = min
�
y�; (pu)�1(z)

	
is the amount of asset traded in direct trades, yd = min

�
~yhq ; (p

a)�1(z; q)
	
is

the amount of asset traded in intermediated trades, and we have replaced q by its expression above. The �rst

term on the right side of (122) is the marginal bene�t of real balances to the investor in direct trades. The

second term is the marginal bene�t in intermediated trades. An equilibrium is a list (z; yu; yd; q) solution to

(121), (122), and the bargaining outcomes.

Consider �rst an OTC market without dealers, �d = 0. The trade size is uniquely determined by (122)

and it is such that @yu=@i < 0. Moreover, as i approaches 0, yu approaches y�. The same results hold

if agents bargain gradually over the illiquid asset since in that case the bargaining solution coincides with

the proportional solution. However, the trade size is larger if agents bargain gradually over the liquid asset

instead of the illiquid one. This is another illustration of how the agenda of the negotiation matters for

allocations and welfare. If agents bargain according to Nash, then yu < y� even when i is driven to 0. So

trade volume is ine¢ ciently low. Gradual bargaining leads to larger trade sizes and larger trade volume

by allowing agents to capture some of the gains from trade that each unit of real balances generates. We

summarize these results in the following proposition.

Proposition 16 (Gradual bargaining in OTC markets) Suppose �d = 0.

1. (Gradual bargaining over real balances) If ("h � "`)=(2"`) > i=�, then there exists a unique

steady-state monetary equilibrium. It is such that y approaches y� as i approaches 0.
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2. (Gradual bargaining over illiquid assets) If ("h � "`)=("h + "`) > i=�, then there exists a unique

steady-state monetary equilibrium. It is such that y approaches y� as i approaches 0. The trade size,

y, is lower if agents bargain gradually over the illiquid asset instead of bargaining gradually over real

balances.

3. (Nash bargaining) In any steady-state monetary equilibrium, y < y�.

Proof. (1) The equilibrium condition is given by (122) with �d = 0, which can be rewritten as

f 0(
 + y)

f 0(
� y) =
"`
"h

�
1 +

2i

�u

�
; (123)

To have a solution with y > 0, it is necessary and su¢ cient that "`"h
�
1 + 2i

�u

�
< 1, that is, ("h�"`)=2"` > i=�u.

(2) First we derive the equilibrium condition as in (122). When the agents bargain over DM asset, the

payment is determined by Egalitarian solution and hence

pDM (y) =
"h [f(
 + y)� f(
)] + "` [f(
)� f(
� y)]

2
:

Thus, the FOC for the consumer is given by

�ipDM 0(y) + �u[u0(y)� pDM 0(y)] = 0;

which can be rewritten as
f 0(
 + y)

f 0(
� y) =
"`
"h

�
i+ �u

�u � i

�
; (124)

To have a solution with y > 0, it is necessary and su¢ cient that "`
"h

�
i+�u

�u�i

�
< 1, that is, ("h�"`)=("h+"`) >

i=�u. Moreover, since �
i+ �u

�u � i

�
>

�
1 +

2i

�u

�
;

the y that solves (123) is larger than that that solves (124).

(3) Following Proposition 4, the payment determined by Nash solution is given by

pN (y) =
"`f

0(
� y)
"hf 0(
 + y) + "`f 0(
� y)

"h [f(
 + y)� f(
)] +
"`f

0(
� y)
"hf 0(
 + y) + "`f 0(
� y)

"` [f(
)� f(
� y)] ;

Hence, the payo¤ of the h-investor is

"hf
0(
 + y)f"h [f(
 + y)� f(
)]� "` [f(
)� f(
� y)]g

"hf 0(
 + y) + "`f 0(
� y)
:

It is easy to check that close to y� this surplus is decreasing. Hence, under Nash bargaining the trade size

is ine¢ ciently low for all i � 0.
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Consider the other polar case of a pure dealer market where all trades are intermediated, �u = 0 (This

corresponds to the version of the model by Lagos and Rocheteau (2007, 2009), and Lagos and Zhang (2018)).

From (122), the equilibrium trade size is the solution to:

"hf
0 �
+ yd�

"`f 0(
� yd)
� 1 + 2i

�d
; " = " if yd > 0. (125)

The trade size decreases with i and increases with �d. As i goes to 0 then yd tends to y�. In accordance

with Proposition 16, the Friedman rule implements the �rst best trade size under gradual bargaining while

it fails to do so under Nash bargaining. From (121) the interdealer price decreases with i because as i goes

up, investors reduce their real balances, which reduces the demand for illiquid assets.

Finally, consider an economy with both �u > 0 and �d > 0. First, replacing q by its expression given by

(121) into pa(y), we obtain pu(y) < pa(y) for all y � yd. For the same trade size, buyers pay less in direct

trades than in intermediated trades. It follows that for i close to 0, investors trade the �rst best in direct

trades, yu = y�, while they are liquidity constrained in trades with dealers, i.e., yd solves (125). So for low

interest rates, an increase in i does not a¤ect prices and trade sizes in direct trades but it reduces trade sizes

in intermediated trades.
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