
The Rebound Effect for Automobile Travel: 
Asymmetric Response to Price Changes and Novel Features of the 2000s 

 
Kent M. Hymel 

Kenneth A. Small 
 

 
August 14, 2014 

 
 

Hymel: Dept. of Economics, California State University at Northridge; 
 kent.hymel@csun.edu 
Small: Dept. of Economics, University of California at Irvine; 
 ksmall@uci.edu 

 
 

JEL Codes:  Q41, R41, L91 
Keywords: Rebound effect, VMT elasticity, Gasoline demand, Asymmetric response 

 
 
 

Abstract 
 

Previous research suggests that the elasticity of light-duty motor vehicle travel with respect to 
fuel cost, known as the “rebound effect,” is modest in size and probably declined in magnitude 
between the 1960s and the late 1990s. However, turmoil in energy markets during the early 
2000s has raised new questions about the stability of this elasticity. Using panel data on U.S. 
states, we revisit the simultaneous-equations methodology of Small and Van Dender (2007) and 
Hymel et al. (2010) to see whether structural parameters have changed. Using data through 2009, 
we confirm the earlier finding of a rebound effect that declines in magnitude with income, but 
we also find an upward shift in its magnitude of about 0.025 during the years 2003-2009. In 
addition, we find that the rebound effect is much greater in magnitude in years when gasoline 
prices are rising than when they are falling. It is also greater during times of media attention and 
price volatility, which explains about half the upward shift just mentioned. 
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The Rebound Effect for Automobile Travel: 
Asymmetric Response to Price Changes and Other Quirks of the 2000s 

 
 
1. Introduction 
 

Many empirical quantities determine the effectiveness of energy policies toward light-

duty motor vehicles. Analysts have come increasingly to appreciate the importance of one: the 

elasticity of vehicle travel with respect to fuel cost, the latter defined as the ratio of fuel price to 

fuel efficiency. If it is large, this elasticity policy evaluation in two notable ways. First, it tends to 

undermine the effectiveness of direct controls such as the Corporate Average Fuel Efficiency 

(CAFE) regulations in the United States. This is because the induced travel offsets some of the 

energy savings that would otherwise occur—the origin of the name “rebound effect.” Second, 

external costs of motor vehicle travel that are not directly related to energy use—mainly 

congestion, accidents, and local air pollution—can loom large in a cost-benefit analysis of 

efficiency regulations; they therefore magnify the differences in cost-effectiveness between 

policy measures that discourage driving versus those that encourage driving. 

The rebound effect is often measured as the negative of the elasticity of driving with 

respect to fuel cost per unit distance—also known as the price-elasticity of vehicle miles of travel 

(VMT), or simply the “VMT elasticity.” This “direct” rebound effect is typically expressed as a 

percentage: for example, a VMT elasticity of -0.20 corresponds to a rebound effect of 20%. Most 

demand models assume that fuel efficiency enters the VMT decision only via its role in 

determining the per-mile price of driving, so that the elasticities of VMT with respect to fuel 

price and fuel intensity (the reciprocal of fuel efficiency) are identical. We follow this practice, 

except where we report testing whether VMT indeed responds the same way to fuel price and to 

fuel intensity.  

A substantial body of earlier empirical evidence mostly supported a long-run rebound 

effect of 15% to 30% over the last few decades of the twentieth century.1 Differences among the 

studies demonstrate the importance of model specification: for example, the way dynamics are 

dealt with, e.g. by whether or not lagged effects and autoregressive errors are accounted for. 

1 For literature reviews, see Greening et al. (2000), Small and Van Dender (2007), and Hymel et al. (2010). For 
meta-analyses of results from these mostly pre-2000 studies, see Goodwin et al. (2004), Graham and Glaister 
(2004), and Brons et al. (2008). 
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Small and Van Dender (2007) conclude that omitting dynamics is likely to cause the short-run 

rebound effect to be overestimated, and to obscure the relationship between short and long run.2 

In addition, results of US studies are sensitive to how they account for the influence of the US 

Corporate Average Fuel Efficiency (CAFE) standards, which went into effect in 1978. 

More recent literature has extended the earlier literature in several directions. Two 

directions of special interest are how the rebound effect may change over time, and whether its 

measurement is sensitive to bias due to omitted variables. We begin with our own previous work, 

on which the current paper builds.  

Small and Van Dender (2007), using data on individual states in the US for years 1966-

2001, estimate a three-equation model system in which VMT, vehicle ownership, and fuel 

efficiency are simultaneously determined. They find that ignoring this endogeneity of fuel 

efficiency (in particular, that the fuel efficiency chosen jointly by consumers and manufacturers 

depends on amount of travel) leads to an overestimate of the rebound effect. Furthermore, Small 

and Van Dender interact fuel cost with other variables to allow the rebound effect to vary with 

those variables. They find that the rebound effect declines substantially with income and, to a 

lesser extent, it increases with fuel cost. As a result, although the long-run rebound effect is 

estimated to be 22.2% averaged over their entire sample, it is only 10.7% averaged over the last 

five years of their sample. Short-term rebound effects (response in one year) are approximately 

one-fifth as large, resulting from their finding that the lagged endogenous variable plays a strong 

role in the VMT equation. 

Hymel et al. (2010) extend the model of Small and Van Dender to account for the 

interrelationship between travel and congestion. They accomplish this by adding a fourth 

equation predicting the average amount of congestion in a state. At the same time, the equation 

for VMT is modified to include an influence from congestion, and the data set is extended 

through 2004. They obtain similar results to Small and Van Dender, although with a somewhat 

less pronounced decline with respect to income. 

Greene (2012) carries out a number of analyses similar to those of Small and Van Dender 

(2007), using national rather than state data but extending the sample to 2007. Greene confirms 

2 We use the term “short run” to designate one year, and “long run” to designate an asymptotic result if a change is 
continued indefinitely.  
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several results of Small and Van Dender: in particular, he finds a similar value for the price-

elasticity of VMT, and finds that it has declined over time and that it declines with income. 

Hughes et al. (2008) compare the price-elasticity of gasoline measured over two six-year 

periods: 1975-80 versus 2001-06. They find a large decline in magnitude, from -0.21 to -0.08 in 

what appears to be their favored specification. This finding is for the price elasticity of fuel use, 

of which VMT is but one component; but it suggests that the VMT elasticity declined in 

magnitude by a similar amount since there is no evidence that the other component of the VMT 

elasticity, namely the elasticity of fuel efficiency, has changed substantially. In their preferred 

specification, which deals with possible endogeneity of fuel price, Hughes et al. do not account 

for dynamics. 

Hughes et al. also test whether the price elasticity declines in magnitude with income, as 

found by Small and Van Dender (2007) and Hymel et al. (2010). They find instead an effect in 

the other direction, and so suggest that the observed decline in the rebound effect over time may 

be due to suburbanization and declining public transit service, both of which lock travelers more 

firmly into automobile use. Interestingly, Litman (2013) cites these same factors as downward 

influences on the rebound effect during the earlier period, suggesting that they have waned 

during the 2000’s. We have not seen any formal argument, either theoretical or empirical, for 

why these factors should have a major effect in either direction. 

Two recent studies make use of odometer readings from California’s smog test—

arguably the most accurate available measure of VMT—to provide estimates of the elasticity of 

VMT with respect to either fuel price or fuel cost per mile. Both studies use very large samples 

of individual vehicles. The first, by Knittel and Sandler (2012), takes advantage of the existence 

of regions within California in which older vehicles must take a smog test every two years. They 

use test data from 1998 through 2010 and a simple log-log specification, with control variables 

for demographics and for whether the vehicle is a light truck. In some of their specifications they 

also include fixed effects representing year, vintage, and make. Knittel and Sandler interpret the 

resulting elasticities as covering a time period of two years, since that is the time interval over 

which VMT is measured. The estimates of VMT elasticity with respect to fuel cost per mile vary 
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between -0.14 and -0.26, depending on whether or not the make is subdivided further in defining 

fixed effects.3 

The second study using California smog test data is by Gillingham (2013). Gillingham 

combines smog test data for years 2005-2009 with micro observations of new-vehicle 

registrations in 2001-2003 for the same vehicles. In this way he observes VMT over a several-

year period, typically six or seven years due to the requirement that vehicles are tested at those 

ages. He finds an elasticity of VMT with respect to gasoline price of -0.25, a finding quite robust 

to various specification checks. Gillingham interprets this as roughly a two-year elasticity, 

because it is identified mainly by a price spike between 2007 and 2009. This means of 

identification is also a weakness of the study: during this same time interval the US economy 

entered its most significant recession since the 1930s, accompanied by turmoil in housing 

markets including foreclosures requiring many people to move. Despite Gillingham’s having 

controlled for macroeconomic conditions through a measure of unemployment and a consumer 

confidence index, one must worry that gasoline prices are correlated with unobserved factors 

related to changing economic conditions that also influence the amount of driving. 

The two studies just described have the advantage of very large samples of individuals, 

permitting greater precision in estimation and controls for heterogeneity across individuals. 

However, both studies assume that VMT responds to contemporaneous gasoline prices; yet the 

descriptive data shown by Knittel and Sandler, comparing graphs of gasoline prices and VMT 

over time, suggest a one to two year lag between movement in gasoline price and movement in 

VMT. As already noted, omitting such dynamic effects may cause the estimated elasticities to be 

somewhat larger in magnitude than the true short-run (or even two-year) elasticities. 

Why should long-run and short-run responses of VMT differ? Molloy and Shan (2013) 

provide an intriguing look at one possible reason: induced changes in household location. They 

analyze how housing construction within small areas responded to fuel prices over the period 

1981 to 2008.4 Their model includes lags up to four years, which they found sufficient to account 

for virtually all the observed responses. Their results imply that a one percent increase in 

3 These numbers are the range of coefficients of log (dollars per mile) in their Table 18.3 for Models 2, 4, and 5. In 
other models, the authors find heterogeneity with respect to the size of the dollars per mile variable. They explore 
heterogeneity further in a more recent working paper, in which they find the VMT elasticity to vary between -0.11 
and -0.18 across quartiles of fuel efficiency (Knittel and Sandler 2013, Table A.2, next to last column). 

4 The areas are “permit-issuing places, which are usually small municipalities” (Molloy and Shan 2013, p. 1214). 
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gasoline price reduces construction over the next four years by one percent, which is 0.03 

percent of the total housing stock (their Table 2). Thus residential location provides a possible 

explanation for why Small and Van Dender (2007) and Hymel et al. (2010) find substantial lags 

in the response of VMT to changes in fuel cost. 

Our conclusion from the more recent literature is that mounting evidence raises the strong 

possibility that the rebound effect has become larger during the 2000s. But not enough time has 

passed to allow definitive tests, especially because other factors were changing so drastically 

during that same time period. We respond here in three ways. First, we re-estimate earlier models 

with data extending through 2009. Second, within those re-estimated models we test whether 

there is a structural break in the determinants of VMT during the decade 2000-2009. Third, we 

consider other explanations for changes in behavior over that decade: specifically, asymmetries 

between response to rising and falling gasoline prices, and behavioral responses to the intense 

media attention that was sometimes given to fuel prices. 

 

2. Theory and data 

 

2.1 Theory 

 

The model of Small and Van Dender (2007) explains how consumers and manufacturers 

simultaneously choose how much to travel, the size of their vehicle stock, and the fuel efficiency 

of their vehicle stock. Conceptually, the structural model is: 
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where M is aggregate VMT per adult; V is size of the vehicle stock per adult; E is average fuel 

efficiency of the entire vehicle stock; PV is a price index for new vehicles; PF is the price of fuel; 

PM≡PF/E is the fuel cost per mile; XM, XV and XE are exogenous variables (including constants); 

and RE represents regulatory measures that directly or indirectly influence fleet-average fuel 

efficiency—namely, a variable cafe representing how tightly CAFE regulations constrain 

manufacturers. 
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The standard definition of the direct rebound effect5 can be derived from a partially 

reduced form of (1), which is obtained by substituting the second equation into the first and 

solving for M. Thus the solution M̂  is implicitly defined by: 
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The VMT elasticity is: 
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where εY,X is the direct structural elasticity of dependent variable Y with respect to independent 

variable X in equation set (1). 

An important assumption in (1) is that M responds to E only through the fuel cost per 

mile, PM≡PF/E. Small and Van Dender (2007) were not able to confirm this assumption, but felt 

their dataset contained year-to-year variation in fuel efficiency that was inadequate to provide a 

satisfactory test. We discuss in Section 3 another attempt to test this assumption explicitly, with 

more promising results. 

We generalize (1) in two ways to handle dynamics. First, we assume that the error terms 

in the empirical equations exhibit first-order serial correlation, meaning that unobserved factors 

influencing usage decisions in a given state will be similar from one year to the next. Second, we 

allow for behavioral inertia by including the one-year lagged value of the dependent variable as a 

right-hand-side variable. We specify the equations as linear in parameters and with most 

variables in logarithms, and for reasons explained later we add variables that are interactions 

5 The “direct rebound effect” is distinguished from various further responses that may occur in general equilibrium, 
such as responses to associated vehicle price increases, induced changes in the consumption of other goods, and 
institutional changes in fuel-tax rates. See Borenstein (2013) for a helpful taxonomy. Our view is that the direct 
rebound effect is the most useful behavioral quantity that might be considered at least somewhat generalizable 
across situations, and that other effects should be modeled specifically within any particular regulatory scenario. 
Specifically, we seek a measure that mainly reflect the demand side of the market, rather than incorporating supply 
adaptations which will be specific to market organization and manufacturer strategies. The one exception to this is 
the equation explaining fuel intensity, which necessarily incorporates both demand-side and supply-side features. 
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between selected exogenous or endogenous variables mZ1  and fuel cost. Thus we estimate the 

following system: 

  (4) 

with autoregressive errors: 

 k
t

k
t

kk
t uu ερ += −1 ,   k=m,v,f.  

Note that fint measures fuel intensity  (gallons per mile), which is the reciprocal of fuel 

efficiency. Here, lower-case notation indicates that the variable is in logarithms. 

In this notation, equation (3) and its long-run counterpart derived in Small and Van 

Dender (2007) imply that the short- and long-run rebound elasticities are: 

 

 
vmmv

vmv
PMM

PMM αα
βαε

ε
−

+
=

1
2,

,ˆ   (5a) 

 

 
vmmvvm

vmvv
PMML

PMM αααα
βααε

ε
−−−

+−⋅
=

)1)(1(
)1( 2,

,ˆ   (5b) 

 
These equations make explicit that our system accounts for the effects of a change in regulations through 

two potential pathways: the direct effect of fuel cost on driving and the indirect effect arising through 

induced changes in the vehicle stock. Empirically, we find that the first path is by far the dominant one, so 

that one could ignore the second path as an approximation; this may simply indicate that decisions on 

number of vehicle to own are governed mainly by factors other than the cost of driving. 

 

2.2 Data and empirical specification 

 

The data set used here is a cross-sectional time series, with each variable measured for 50 

US states (plus District of Columbia), annually for years 1966-2009. Variables are constructed 

from public sources, mainly from the US Federal Highway Administration (FHWA), US Census 
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Bureau, and US Energy Information Administration.6 In addition, we have collected variables on 

media attention to gasoline prices, as described in Section 3.4. 

In Appendix A, we list the primary variables used in the statistical estimation. All the 

dependent variables, and many others as well, are measured as natural logarithms; variable 

names starting with lower case letters are logarithms of the variable described. All monetary 

variables are real (i.e. inflation-adjusted). Each of these variables is updated to 2009 using the 

same or a similar source as before. However, in several cases, the responsible agency has revised 

the numbers for earlier years. We have taken advantage of these revisions in the updated data 

series used here. We have elsewhere compared results with and without these data revisions, 

ascertaining that they did not have important effects on the results (Small and Hymel 2013). The 

variable cafe measuring stringency of CAFE standards is, as before, constructed by using a 

reduced-form version of the model system to predict the desired fuel efficiency under a counter-

factual scenario where CAFE standards are absent, then taking the logarithm of the ratio of that 

desired efficiency to the actual CAFE standard.7 

As in Small and Van Dender (2007), the estimation uses three-stage least squares, 

accounting for first-order autocorrelation by transforming the equations into a nonlinear system 

and defining instrumental variables as described there. It includes state fixed effects, but not time 

fixed effects (year dummies) because early experimentation revealed that this removed too much 

of the needed variation in variables, leading to very imprecise estimates.8  
 

3. Empirical Results 

 

6 See Small and Van Dender (2007) for a full description of data sources and a discussion of possible weaknesses. 
The two most serious weaknesses are the interrelated ways that FHWA calculates VMT and fuel efficiency, based 
on data obtained from individual states. Greene (2012, p. 18) provides an excellent discussion. He concludes that the 
resulting errors are unlikely to cause large errors in year-to-year changes in these variables, which are what drive our 
results due to use of state fixed effects. 

7 We have not adjusted the estimated standard errors of our coefficient for the fact that we use predicted values to 
construct an independent variable means. Thus our reported standard errors are probably slightly understated. 

8 In addition, doing so would make the identification of the VMT elasticity more dependent on state-specific price 
fluctuations, which might be due to short-term turmoil in gasoline markets leading drivers to expect such price 
changes to be erratic and temporary. (We are indebted to James Sallee for this point.) We do control for time 
through the dummy variable for years 1973 and 1979, and a single time trend in the vma equation and three time 
trends in the fint equation; experimentation did not reveal more complex time trends that could be reliably estimated. 
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A major limitation of the previous literature is its inability to determine whether or not 

the rebound effect has changed over time. Theoretical arguments, especially by Greene (1992), 

suggest that it should. Basically, the argument is that the responsiveness to the fuel cost of 

driving will be larger if that fuel cost is a larger proportion of the total cost of driving. If initial 

fuel cost is high, that increases the proportion; but if the perceived value of time spent in the 

vehicle is high, either because of congestion (closely related to urbanization) or because of a high 

value of time (closely related to income), that decreases the proportion. Thus we expect the 

rebound effect to increase with increasing initial fuel cost, and to decrease with increasing 

income and urbanization. On the few occasions when such factors are even discussed, most 

analysts have presumed that income is the dominant one and therefore have hypothesized a 

decline in the rebound effect over time, due to rising real incomes. Most previously used data 

sets, however, have covered too short a time span to test any of these arguments satisfactorily.9 

With the longer time span used here (44 years), there is a much better opportunity to see 

such changes. We explore them in three distinct ways. First (Section 3.1), we see whether the 

basic model, estimated over different time periods but each with a constant rebound effect, yields 

different results. We find a substantial diminution in the rebound effect in the period since 1995. 

As for the decade beginning in 2000, the data series is too short to apply this methodology. 

Second (Section 3.2), we explore income, fuel costs, and urbanization as the causes of 

these changes. Each of these factors is entered in the model in such a way that the rebound effect 

can vary with it rather than varying over time in an unexplained manner. We find results 

consistent with those of Small and Van Dender: the rebound effect declines with increasing 

income and urbanization, and it increases with increasing fuel cost. By far the most important of 

these sources of variation is income, whose effect is large enough to greatly reduce the projected 

rebound effect for time periods of interest to current policy decisions. Despite these controls, we 

find a consistent negative coefficient (indicating a strengthening of the rebound effect) for a 

9 Two recent exceptions are the studies by Wadud, Graham and Noland (2007a, 2007b) using time-series cross 
sections of individual households from the US Consumer Expenditure Survey. Cross-sectionally, they find that the 
absolute value of the price elasticity of fuel consumption has a U-shaped pattern with respect to income, taking 
values of 0.35 for the lowest income quintile, falling to 0.20 for the middle, and rising again to 0.29 for the highest 
(2007b, Table 2). But when they hold other variables constant while allowing income to vary both cross-sectionally 
and over time (1997-2002), they find that the elasticity declines in magnitude with income, from 0.51 in the lowest 
two income quintiles to 0.40 in the highest. 
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dummy variable for years 2003-2009 when it is added to the vma equation, suggesting some 

additional unaccounted-for factors that have strengthened the rebound effect. 

Third (Section 3.3), we consider asymmetry in the response to increases and decreases in 

fuel prices, finding a much larger response to increases. We also consider the possible role of 

media coverage and price volatility in explaining this asymmetry, finding they explain about half 

the previously mentioned upward shift in the rebound effect during 2003-2009. 

We focus on the three-equation model of Small and Van Dender (2007) because it is 

simpler and somewhat less sensitive to specification than the four-equation model of Hymel et 

al. (2010). While the latter is theoretically more complete, it is more complex and estimating it 

requires imputation of pre-1980 congestion values, thereby introducing more places for data 

uncertainties to affect the results. However, we have estimated most specifications described 

here using the four-equation model, and occasionally comment on the results. 

 

3.1. Variation by Time Period 

 

This section presents the results of including variable pm (log fuel cost per mile), without 

any interactions but with all other controls, in the equation explaining vma (log vehicle-miles 

traveled per adult). That is, we estimate system (4) setting 01 =mγ . The coefficient of pm is the 

“structural” VMT elasticity, i.e. εM,PM, which as noted earlier differs little from the partial-

reduced-form elasticity given by (2).  

In order to see whether the rebound effect changes over time, we carry out this estimation 

on the full sample and on two subsamples: 1966-1995 and 1996-2009. Table 1shows that the 

estimated structural elasticity falls in magnitude by 46 percent between these two time periods. 

For completeness, the table also shows the results of applying the same procedure to the four-

equation model of Hymel et al. (2010); in that case the decline in the later time period is even 

more pronounced. In both cases, the estimated long-run rebound effect is approximately five 

times as large as the short-run version, based mainly on the estimated coefficient of the lagged 

dependent variable.10 

10 In the three-equation models, that coefficient, denoted αm in (4), varies between 0.82 and 0.84 for the “full” and 
“early” samples. Applying equations (5) when αmv and/or αvm are small, the ratio of long-run to short-run rebound 
effect is approximately 1/(1-αm), or 5.6 to 6.3. The coefficient is not well estimated in the “late” sample. The 
elasticity formulas for the four-equation model are more complex (see Hymel et al. 2010, eqn 14) and not as easily 
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Table 1. Short-run structural elasticity of VMT with respect 
to fuel cost, estimated over different time periods 

(no interacting variables) 

Sample: full early late
1966-2009 1966-1995 1996-2009

Coefficient of pm 
(standard errors in 
parentheses)
Three-equation model -0.0447 -0.0458 -0.0246

(0.0029) (0.0037) -0.0071

Four-equation model -0.0440 -0.0469 -0.0131
(0.0030) (0.0058) (0.0075)

 
 

This result of a falling rebound effect is consistent with results noted earlier by Hughes et 

al. (2008) and Greene (2012). 

 

3.2. Variation of rebound effect with income, fuel cost, and other variables 

 

This section explores how the main specification of Small and Van Dender is affected by 

the addition of new data covering years 2002-2009.  

Table 2 shows selected results from our main specification (Model 3.3), in which three 

variables—income, fuel cost, and urbanization—are interacted with fuel cost, thereby allowing 

the estimated structural VMT elasticity to vary with those three variables.11 All three are entered 

in normalized form, meaning their mean values have been subtracted off, so that the coefficient 

of pm itself gives the structural VMT elasticity computed at mean values of these three 

interacting variables. Note that one of the interacting variables is pm itself, meaning the 

interacted variable is pm2. In each case, the incremental effect of variable Z on the rebound effect 

approximated. As noted in Hymel et al. (2010, p. 1227), persistent measurement error in some of the variables could 
be interfering with an accurate measurement of αvm, causing us to overestimate the ratio between long- and short-run 
elasticities. 

11 Income per capita (inc) and fuel cost per mile (pm) are in logarithms; urbanization (Urban) is a simple ratio 
(fraction of population living in urban areas). Our naming convention uses all lower case for variables in logarithms, 
but a capitalized name otherwise. 
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is given by ∂(∂vma/∂pm)/∂Z.12 Since ∂vma/∂pm<0 at most variable values, a negative coefficient 

on mγ1  indicates that higher values of Z imply larger absolute elasticities, i.e. larger rebound 

effects. 

 

Table 2. Models with interacted coefficients 
(selected coefficients) 

  

Variable Coeff. Std. Err. Coeff. Std. Err.

pm -0.0466 0.0029 -0.0464 0.0029
pm*Dummy_2003_09 -0.0251 0.0076
pm*inc 0.0528 0.0108 0.0699 0.0121
pm 2 -0.0124 0.0059 -0.0113 0.0060
pm*Urban 0.0119 0.0094 0.0078 0.0096
vma lagged 0.8346 0.0102 0.8279 0.0105

Calculated rebound elasticities:
1966-2009

Short run
Long run

2000-2009
Short run
Long run

-0.047
-0.295

-0.028

Model 3.3 Model 3.18

-0.178

-0.050
-0.309

-0.042
-0.255  

 

The results for Model 3.3, our base specification, have only one important difference 

from the results of using the shorter sample, 1966-2001, of Small and Van Dender (2009). On 

that shorter sample, the coefficient on pm2 was estimated to be smaller and statistically 

insignificant.13 We think the additional variation in fuel prices during the 2000s enables us to 

measure this coefficient more precisely.  

Table 2 also shows a model, labeled 3.18, that allows for an additional unexplained shift 

in the structural VMT elasticity starting in 2003. This starting year, chosen mostly by trial and 

12 Hence if )3,2,1,( 11 == kγγ m
k

m is the coefficient vector of these three interacted variables, as in (4), this incremental 
effect is equal to m

kγ1  for the appropriate value of k in the case of variables inc and Urban, and is equal to m
kγ12  in the 

case of variable pm.  

13 Coefficient estimate -0.0074, standard error 0.0069. The 1966-2001 results described here do not precisely match 
the published results from the earlier paper because we have taken advantage of some data revisions to improve the 
accuracy of our variables.  
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error, marks roughly the time when it became apparent that a major rise in fuel price was 

underway. 

The lower panel of the table shows elasticities calculated at two different sets of average 

values of interacting variables: the average over the full sample and that over the last ten years of 

the sample. As in the earlier paper, there is a substantial drop in their absolute values, although it 

is much less in Model 3.18 due to the boost given by the dummy variable for 2003-2009. Model 

3.18 shows a strong upward shift of 0.025 in the absolute value of the short-run structural VMT 

elasticity starting in 2003. Nevertheless, the effect of income remains strong, in fact slightly 

stronger. As a result, it fully counteracts the upward structural shift, so the rebound effect is 

again smaller in magnitude during the last ten years of the sample than over the entire sample. 

Furthermore, one can anticipate that the downward influence of income on the rebound effect 

will continue as incomes grow, whereas we have no reason at this point to expect a further 

structural shift or even the continuation of the one exhibited by the variable Dummy_2003_09. 

And even if fuel prices continue to rise, the resulting upward pressure will not likely overcome 

the downward pressure because the coefficient of pm2 is too small, and projected increases in 

fuel efficiency are likely to offset some or all of the increases in fuel price.14  

Model 3.18 does not fully account for the large differences by time period illustrated by 

Table 1. This is not surprising, since the use of this dummy variable is an admission of ignorance 

about what might be changing. Thus, in subsequent sections of the paper we pursue a more 

complete explanation of what changed starting in the early 2000s. 

As detailed in Small and Hymel (2013), we obtain comparable results with the four-

equation model of Hymel et al. (2010).15  

We hoped our longer data set would enable us to better test the assumption implicit in (1) 

that consumers respond equally, in elasticity terms, to fuel price and fuel intensity (the inverse of 

14 Even without the new CAFE standards recently promulgated for new cars of model years 2017-2025, EIA (2012) 
projects new-vehicle fuel cost per mile to be roughly flat over the period 2015-2035. 

15 We also estimated a version of Model 3.3 adding the national unemployment rate as a variable in each of the three 
equations (see Appendix Model 3.3c). We thank Robert Mendelsohn for suggesting this improvement in the model. 
The variable is expressed as a percentage. The result suggests that unemployment increases fuel intensity, probably 
because it causes drivers to keep older cars. Including this variable makes the price variable in the fuel intensity 
equation stronger and statistically significant. It makes very little difference otherwise, so we omit this variable in 
our subsequent discussion in order to use the previously published version of the model as our starting point for 
further changes. 
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fuel efficiency). This is tested by simply replacing the variable pm by two variables equal to its 

two constituents, namely pf and fint. When we do this, we find the variable fint to have a very 

small but imprecisely measured coefficient, just as in our earlier papers. However, in the four-

equation model, we obtain statistically significant and different coefficients on both variables.16 

Like Gillingham (2011, Table 3.4 and Section 3.1.3), we find that fuel intensity has a smaller 

impact on driving than does fuel price. 

 
3.3 Asymmetry in response to price changes 
 

We now consider factors that may have contributed to the apparent structural break in 

2003. In this section we consider asymmetric response to price changes; in Section 3.4 we 

consider media coverage and price volatility. 

Evidence suggests that for various types of energy purchases, demand is more responsive 

in the short run to increases than to decreases in operating cost.17 In this section, we investigate 

whether such asymmetry applies to vehicle-miles traveled.  

 

3.3.1 Models based on rises versus falls of fuel price 
 

We decompose our fuel price variable into separate components, similarly to Dargay and 

Gately (1997). We have simplified their three-way decomposition into a two-way 

decomposition, and do so for each state in our sample.18 In this subsection, we decompose pf, the 

logarithm of fuel price; in the next subsection we decompose pm, the logarithm of fuel cost per 

mile.  

The decomposition of fuel price for state i in year t is as follows: 

 
 pfi,t = pfi,1966 + pf_risei,t + pf_cuti,t , 

16 Specifically, when this decomposition of pm is applied to the four-equation counterpart of Model 3.3, the 
coefficient of pf is -0.0544 (0.0035) and that of fint is -0.0232 (0.0107), with standard errors in parentheses.  

17 For example, energy and oil demand (Gately and Huntington 2002, Dargay and Gately 2010); transportation fuels 
(Dargay and Gately 1997); and motor vehicle ownership (Dargay et al. 2007).  

18 We do this by not distinguishing between increases that occurred before and after the maximum price observed in 
the data. In addition, we do not place special importance on the year 1973 as do Dargay and Gately (1997), in part 
because we already have a dummy variable in our specification to capture special influences on travel behavior 
during that year. 
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where pf_risei,t and pf_cuti,t are the cumulative effects of all annual increases and decreases, 

respectively, since the start of the sample (here 1966): 
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Thus the coefficients of pf and variables constructed from it are replaced, in our 

asymmetric specifications, by two separate coefficients, one depending on upward annual 

changes and the other on downward annual changes. Because we account for state fixed effects 

in our specification (i.e., there is a constant term for every state), pfi,1966 is absorbed into the fixed 

effects and we need only any two of the three variables pf, pf_rise, and pf_cut. The most 

convenient choice proves to be the two variables, pf and pf_cut; the effect of price increases is 

then given by the coefficient of pf, while the effect of price decreases is given by the sum of the 

coefficients of pf and pf_cut. These variables replace pf in both the equation explaining the 

logarithm of vehicle-miles traveled (vma) and that explaining the logarithm of fuel intensity 

(fint). We also include interactions of one or both of these variables with income, fuel cost per 

mile, and urbanization. 

The results for our preferred specification, labeled 3.21b, are summarized in Table 3. The 

symmetric model 3.3 is shown for comparison. These results suggest that the fuel-cost elasticity 

of vma becomes modestly larger in absolute value when measured only for price increases, and 

smaller for price cuts. In Model 3.21b, the direct short-run effect of a price rise on driving is 

more than twice as large as that of a price cut (-0.0639 compared to -0.0639+0.0340); and it is 

one-third larger than the effect measured in the model assuming symmetry. Greene (2012) 

measures similar differences between the effects of rising and falling prices, although he cannot 

rule out statistically that they are identical. 
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Table 3. Selected coefficient estimates: base model and asymmetric model 
(three-equation models) 

 

Equation and variable: Coeff. Std. Error Coeff. Std. Error
vma  equation:

pm=pf+fint -0.0466 0.0029 -0.0639 0.0049
pf_cut +fint 0.0340 0.0078

pm*inc 0.0528 0.0108 0.0577 0.0108
pm 2 -0.0124 0.0059 -0.0207 0.0061
pm*Urban 0.0119 0.0094 0.0131 0.0093
vma lagged 0.8346 0.0102 0.8334 0.0105

fint equation:
pf +vma -0.0050 0.0041 -0.0097 0.0060

pf_cut +vma 0.0143 0.0123

  Model 3.3   Model 3.21b

 

 
In the asymmetric model just described (3.21b), a change in fuel efficiency, unlike a 

change in fuel price, has the same impact on vma regardless of whether fuel efficiency is 

increased or decreased. Furthermore, the model posits that an increase in fuel efficiency has the 

same impact (in percentage terms) as that of a fuel price cut. This makes sense from a theoretical 

standpoint because most of the changes in fuel efficiency we are interested in are improvements, 

i.e. they lower the fuel cost per mile just like price cuts. Furthermore, the pathways by which 

consumers consider fuel efficiency are quite different from those by which they consider fuel 

prices, so whatever is causing asymmetry need not affect both parts of fuel cost in the same 

way.19  

The estimated coefficients of the interaction terms from Model 3.21b are similar to those 

from Model 3.3; the rebound effect increases with fuel price and decreases with income. But in 

the asymmetric model, the coefficient on pm2 is larger in magnitude than in the model without 

asymmetry. 20 21 

19 Nevertheless, from a purely empirical point of view, the specification is arbitrary in that we could equally easily 
have used the variable pf_cut instead of pf_cut+fint—that is, we could have assumed that a change in fuel efficiency 
is viewed like a rise in price, not like a fall in price. Ideally we would include both variables, but this would 
effectively amount to measuring separate elasticities on pm and fint which, as explained in Section 3.2, our data 
seem mostly incapable of distinguishing. 

20 We find very similar behavior if the unemployment rate is included in both the vma and fint equations, just as in 
Model 3.3c (as described at the end of Section 3.2). This model is reported in Appendix B as Model 3.21c. Just as 
with Model 3.3c, this model is superior in that it exhibits the expected effect of fuel price on desired fuel efficiency, 
in the form of a statistically significant coefficient for pf+vma in the fint equation. Nevertheless, this improvement 
makes essentially no difference to the results discussed in this paper. 
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 We also estimated Model 3.21b using the generalized method of moments estimator  

(GMM) instead of three stage least squares (3SLS). One drawback of the 3SLS estimator is the 

difficulty involved in calculating clustered standard errors for a model as complex as 3.21b. If 

there is indeed correlation in the standard errors within an individual state across years, the usual 

standard errors are not consistent. We can, however, calculate standard errors clustered at the 

state level for our primary model (3.21b) by using the GMM estimator if we omit the time trend 

variables. Doing so also enables us to compare results across these two types of estimators. 

 Table 4 shows select results for three versions of model 3.21b; the left column uses 3SLS 

as before, the middle column uses 3SLS but drops the time trend variable, and the right column 

uses GMM without the time trend variable. The GMM point estimates and standard errors are 

similar to those obtained from the 3SLS estimator, although the estimated coefficients for the 

variables used to calculate the rebound effect are smaller in magnitude. Some of the difference in 

those estimates is a result of excluding the time trend variable while some is attributable to the 

change in estimator. Nevertheless, the GMM results are more or less consistent with the results 

for alternate model specifications presented below. Finally, clustering the standard errors at the 

state level changes the standard errors of coefficients very little, and does not change the 

statistical significance of any of the variables in the model. 

 

21 We also estimated a model analogous to 3.21b that included the fuel price variables measured in nominal rather 
than real dollars; we thank Stuart Rosenthal for this suggestion. The motivation for this model was the possibility 
that nominal price changes are more noticeable to drivers than real changes. The results, however, showed only a 
small and non-significant difference between drivers' responses to fuel price rises and cuts. This finding lends 
support to our primary asymmetric models and suggests that drivers are most responsive when fuel prices rise faster 
than inflation. 
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Table 4. Alternate estimators: selected coefficients from the vma equation. 

 
 

The asymmetric model implies a somewhat different history of the stringency of the 

CAFE standards than does our base model. This is because the asymmetric model implies that 

price cuts and price rises enter separately as explanatory variables in the counter-factual 

regression explaining fuel efficiency pre-1978, and their different coefficients are carried through 

in projecting desired fuel efficiency post-1978. Figure 1 shows the variable cafe which, as 

explained earlier, captures the difference between desired fuel efficiency and that mandated 

under CAFE standards. Using the symmetric model to derive the desired fuel economy, the 

stringency of CAFE standards drops to zero in 1995 and remains there. Using the asymmetric 

Model 3.21b, however, the standards remain binding until 2006, with stringency jumping notably 

upward in 2000 due to the sharp rise in fuel price during that year. 

 

Figure 1. Stringency of CAFE standards 
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An alternative view of how asymmetry might work is that the difference in response 

between fuel price rises or cuts is not so much in the magnitude, but in the speed with which the 

response occurs. All the models considered in this paper already have an “inertia” built into 

them, in the form of a lagged dependent variable which governs the speed of response to all 

variable changes. But in Model 3.29b in Table 5, we allow also for the possibility that the speed 

of the response differs between rises and cuts in fuel price. This is done by adding various lags of 

pf_rise and pf_cut. 

 

Table 5 Selected coefficient estimates: asymmetry in response to fuel price 

 
 

The results suggest that adjustment to price rises takes place quickly; the response 

elasticity is large in the year of and the first year following a price rise, then diminishes to a 

smaller yet substantial value. But the adjustment to price cuts occurs more slowly: in absolute 

value it is the smallest in the year of the change (0.140); takes its largest value after one year 

(0.0626, from the sum of the first two coefficients between the dashed lines in Table 5); then 

retreats to a value of 0.0215 (sum of all four coefficients) after three years. These response 
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patterns are shown in Figure 2. 

 

Figure 2. Short-run elasticity of VMT with respect to a 
sustained change in fuel price (Model 3.29b) 
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3.3.2  Models based on rises versus falls of fuel cost 
 

We also estimated models that base the asymmetry on the variable measuring fuel cost 

per mile (pm), instead of on fuel price (pf). These models assume that people respond differently 

depending on whether their fuel cost per mile is rising or falling, regardless of whether this is due 

to a change in fuel price or in fuel efficiency. The variables used are formed analogously to the 

previous subsection: fuel cost per mile, pm (the price of mileage), is decomposed into pm_rise 

and pm_cut. 

This decomposition raises a new problem because pm_rise and pm_cut are, like pm, 

endogenous. In the symmetric model, endogeneity of pm is accounted for as part of the three-
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equation model.22 But here the problem is worse: the values of these new variables in any given 

year depend on values taken by an endogenous variable (fuel intensity) in previous years. A fully 

endogenous treatment of pm_rise and pm_cut is thus not feasible, so we have used an 

approximation: the variables are replaced by predicted values, pm_rise_hat and pm_cut_hat, 

each of which is the value predicted by a regression of the corresponding variable on all the 

exogenous variables in the system – that is, on the instruments in the 3SLS estimation routine. 

This procedure basically replicates what instrumental variables does in the case of a simpler 

endogenous variable, so the result of this approximation should be reasonably accurate although 

the standard errors of these variables may be inaccurately measured.  

Table 6 shows selected results of a specification, named Model 3.23, analogous to that of 

Model 3.21b. The latter is shown for comparison. (Each model also contains three interaction 

variables, whose coefficients are shown just below the dashed line.) The coefficient on 

pm_cut_hat tells us the degree of asymmetry: it is positive, showing that the magnitude of the 

elasticity is smaller for cost cuts than for cost rises. The short-run rebound effect is given by 

elasticity -0.0623 when per-mile fuel costs are rising, and -0.0339 (=-0.0623+0.0284) when costs 

are falling. The rebound effect is influenced by pm, income, and Urban much as before.  

 

22 Formally, this is accomplished by entering the variable pm as the sum of two variables, pf + fint, where fint is the 
logarithm of fuel intensity (see Section 3, “Dependent variables”, definition of 1/E). Since fint is the dependent 
variable of the third equation of our model system, the simultaneous estimation performed by the three-stage least 
squares procedure treats it as endogenous where it enters the first equation as part of pm. 
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Table 6 Selected coefficient estimates: asymmetry in response to fuel 
price or fuel cost per mile 

Equation and variable: Coeff. Std. Error Coeff. Std. 
Error

vma  equation:
pm= pf+ fint -0.0639 0.0049 -0.0623 0.0055

pf_cut + fint 0.0340 0.0078
pm_cut_hat 0.0284 0.0093

pm*inc 0.0577 0.0107 0.0535 0.0112

pm2 -0.0207 0.0061 -0.0180 0.0062
pm*Urban 0.0131 0.0093 0.0187 0.0099
vma lagged 0.8334 0.0104 0.8084 0.0122

fint equation:
pf + vma -0.0097 0.0060

pfrise -0.0133 0.0062
pf_cut + vma 0.0143 0.0123
pf_cut 0.0042 0.0096
vma 0.0107 0.0166

Model 3.21b Model 3.23

 
 

In model 3.23, unlike those in the previous subsection, the response to a change in fuel 

efficiency depends on what’s happening to overall fuel costs. If fuel price is rising more rapidly 

than fuel efficiency, then these models predict that people would still respond to a small change 

in fuel efficiency according to the combination of coefficients multiplying variable pm—that is, 

they respond as they would to a rise in fuel price, even if they are actually responding to a fall in 

fuel cost per mile. The behavioral rationale is as follows: if fuel costs are rising due to increasing 

fuel prices and this has heightened people’s awareness, then an improvement in fuel efficiency 

would have a large effect on their driving decisions because it would help offset that fuel price 

rise at a time when they are highly sensitive to it. This is a debatable assumption, as it implies a 

degree of rationality in calculating fuel costs that people may not have in reality.23 For this 

reason, we prefer the models of Section 3.3.1. 

 

 

23 For example, Larrick and Soll (2008) find that consumers have difficulty calculating the impact of fuel economy 
changes on fuel consumption when fuel economy is measured in miles per gallon. The authors refer to this 
phenomenon as the “MPG Illusion”. 
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3.4 Media attention and expectations 
 

Two important findings of previous sections are that the responsiveness of vehicle travel 

to costs sharply increased starting around 2003, and that this responsiveness is much larger when 

fuel prices or costs are rising than when they are falling. But why? In this section, we consider 

two factors that may help explain these variations in responsiveness. 

The first is variations in media attention to fuel prices and costs. Motor vehicle fuel is a 

moderately important part of many people’s budgets, and crude oil even more so. As a result, 

there is a tendency for turmoil in gasoline or oil markets to gain much attention in public media. 

The second is volatility in fuel costs. Volatility could cause consumers to adopt 

contingency plans and thus pay more attention to fuel prices, even without help from the media. 

On the other hand, consumers could ignore what they think are temporary price fluctuations; for 

example, although consumers’ most common expectation of future prices is the current price, 

under some circumstances they apparently expect some reversion to previous price levels.24   

 

Data Description 
 

We construct measures of media coverage based upon gas-price-related articles appearing 

in the New York Times newspaper. Using the Proquest historical database , we tally the annual 

number of article titles containing the words gasoline (or gas) and price (or cost). We then form 

a variable equal to the annual fraction of all New York Times articles that are gas-price-related. 

This fraction ranged from roughly 1/4000 during the 1960s to a high of 1/500 in 1974. Its 

logarithm, normalized by subtracting its mean, is shown in Figure 3. In the specifications shown 

here, we use a dummy variable Media_dummy equal to one when the ratio exceeds its 1996-2009 

median value.25 

 

 

24 Supporting evidence comes from two separate surveys, reported by Anderson et al. (2011) and Allcott (2011), 
both of which asked people directly about their price expectations. Anderson et al. (2011) find that a random walk 
assumption accurately explains their answers except in late 2008, when people expected (correctly, as it turned out) 
that the recent fall in prices would prove to be temporary. 

25Media_dummy is equal to one in years 1973-1981, 1983, 1990-1992, 1994-1997, 2000, 2004-2006, and 2008. It is 
not normalized. 
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Figure 3 
 Media coverage of gas prices 
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The validity of this variable relies in part on the New York Times’ influence on other 

media outlets. Evidence of so-called “inter-media agenda setting” suggests that other media 

follow the New York Times when choosing their news topics. One study by Golan (2006) finds 

that the topics covered by the New York Times in the morning were correlated with evening 

broadcast news coverage topics, with correlation coefficients between 0.14 and 0.26. In addition, 

it is reasonable to assume that national topics such as gas-price changes would be similar across 

news outlets even in the absence of direct influence of the New York Times.  

To measure volatility in fuel prices, we construct a variable whose value in year t is the 

standard deviation of fuel prices over the years t-4 through t. (We choose this five-year interval 

as the most likely time over which new vehicle purchasers would be aware of volatility.) This 

measure, named Price_volatility, varies across states; the average of its logarithm, by year, is 

plotted in Figure 4. 

 

 
 
 
 

 24 



Figure 4 
Fuel price volatility 

0

5

10

15

20

25

1965 1975 1985 1995 2005

av
g 

lo
g 

st
d 

de
v 

fu
el

 p
ric

e

 
 

Specification and results 
 

Table 7 shows several models which include the one or both of the variables for media 

coverage and price volatility, each interacted with either fuel price or fuel cost.26 The media 

variable is specified to influence the response to fuel price but not to fuel efficiency, because the 

variable involves news about fuel prices; this is accomplished by interacting it with pf and not 

pm. This implies that media coverage impacts the rebound elasticity only indirectly, via changes 

in estimated coefficients. The volatility variable, by contrast, reflects a consumer’s own 

experience with variation in fuel costs, and therefore we specify it so as to influence the response 

to both price and fuel efficiency (i.e., it is interacted with pm rather than pf). For comparison, the 

table also shows two models incorporating asymmetry but not media or uncertainty (Models 

3.21b and 3.21d).  

26 As with other interacting variables, we normalize each variable by subtracting its mean value on the entire sample; 
this is done for convenience so that the coefficient of pf or pm measures the short-run structural VMT elasticity 
when all interacting variables take their mean values in the sample. 

 25 

                                                 



 

Table 7 
 Selected coefficient estimates: asymmetry with media coverage 

and/or fuel-price uncertainty 

Equation and Variable Coeff. Std. 
Error Coeff. Std. 

Error Coeff. Std. 
Error Coeff. Std. 

Error Coeff. Std. 
Error

vma equation:
pm = pf + fint -0.0639 0.0049 -0.0710 0.0052 -0.0587 0.0052 -0.0325 0.0088 -0.0351 0.0097

pf_cut + fint 0.0340 0.0078 0.0394 0.0080 0.0286 0.0081 0.0242 0.0089 0.0246 0.0092
pm * Dummy_0309 -0.0277 0.0076 -0.0144 0.0086
pf * Media_dummy -0.0301 0.0101 -0.0412 0.0102 -0.0443 0.0105
pm * Price_volatility -0.0018 0.0005 -0.0011 0.0005
pm * inc 0.0577 0.0107 0.0759 0.0122 0.0583 0.0109 0.0620 0.0113 0.0671 0.0131

pm 2 -0.0207 0.0061 -0.0216 0.0061 -0.0053 0.0075 0.0204 0.0100 0.0107 0.0105
pm * Urban 0.0131 0.0093 0.0099 0.0094 0.0118 0.0094 0.0025 0.0099 0.0056 0.0102
vma lagged 0.8334 0.0104 0.8265 0.0106 0.8325 0.0106 0.8439 0.0108 0.8397 0.0115

fint equation:
pf + vma -0.0097 0.0060 -0.0078 0.0059 -0.0124 0.0059 -0.0109 0.0058 -0.0093 0.0058
pf_cut + vma 0.0143 0.0123 0.0069 0.0120 0.0220 0.0120 0.0210 0.0119 0.0120 0.0117

Model 3.55dModel 3.55Model 3.21b Model 3.21d Model 3.35

 
 

Models 3.35 and 3.55 show that both media coverage and price volatility exert strong 

influences on the price-elasticity of motor vehicle travel, increasing the response to fuel price 

changes and, in the case of volatility, to fuel efficiency changes as well.27 In fact, the effect of 

price volatility is so strong as to eliminate the previously observed positive effect of fuel cost 

itself on the magnitude of the rebound elasticity: the coefficient of pm2 is now reversed in sign 

and just barely statistically significant. This suggests that the rise in the magnitude of the 

elasticity of VMT during the 2000s was due more to volatility than to the higher level of fuel 

price.28 

Because we specified the media variable to interact with fuel price but volatility to 

27 The base response (coefficient of pm is negative, so a negative coefficient on an interaction term mean the 
magnitude of the response increases with the interacting variable. Because these variables are multiplied by pf or by 
pm≡pf+fint, and because pf≡pf_fire+pf_cut, the coefficients of the interactions are part of both ∂vma/∂pf_rise and 
∂vma/∂pf_cut. The coefficient of pf_cut indicates a wedge between the response to price rises and price cuts, a 
wedge whose size does not depend on the media or volatility variable. 

28 These same characteristics persist in the presence of a variable measuring unemployment, and if additional lags 
are added as with Model 3.29b. (The effects of those additional lags show the same pattern, and nearly the same 
magnitudes, as in Model 3.29b.)  
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interact with fuel cost, the “rebound effect,” defined as the response to changes in fuel efficiency, 

is increased in magnitude by fuel-price volatility but not by media coverage. To put it differently, 

given the assumptions of the specification, we find that media coverage tends to intensify the 

effect of fuel prices, while fuel price volatility intensifies the effect of per mile fuel costs 

whatever their source. Furthermore, media coverage undoubtedly responds to consumer interest 

and therefore could be correlated with other variables affecting VMT, thus making it endogenous 

and limiting its usefulness for drawing policy implications. 

We noted earlier the appearance of a shift in the structural elasticity toward higher values 

during the period 2003-09. Model 3.21d confirms that this shift exists even in models with 

asymmetric responses.29 Model 3.55d reveals, however, that about half this shift can be 

explained by our media and volatility variables. (Other models, not shown, demonstrate that 

those two variables share approximately equally in this task of explaining the shift.) The 

remainder of the shift (1.44 percentage points of elasticity) is still unexplained, leaving room for 

future research to uncover the missing factors. 

For completeness, Table 8 shows the long-run price elasticities of VMT, fuel efficiency, 

and fuel consumption using our most preferred models. The elasticities are calculated using 

equations (5) and their counterparts as described by Small and Van Dender (2007). The full 

estimation results for these three models are listed in Appendix B.2. 

 

29 The variable Dummy_0309 is equal to one for years 2003-2009 and zero otherwise, except here it has been 
normalized (like other variables interacted with pm) by subtracting its mean, which is 7/44 = 0.159. (In Model 3.18, 
it was not normalized.) 
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Table 8.  Long-run elasticities implied by preferred models 
Model 3.3

Elasticities:
Price 
rising

Price 
falling

Price 
rising

Price 
falling

VMT with respect to fuel 
efficiency:
  At sample averagea -0.295 -0.184 -0.184 -0.052 -0.052
  At US 2000-2009 avg.b -0.178 -0.042 -0.042 -0.040 -0.040
VMT with respect to fuel 
price:
  At sample averagea -0.295 -0.397 -0.184 -0.214 -0.052
  At US 2000-2009 avg.b -0.178 -0.255 -0.042 -0.202 -0.040

Fuel consumption with 
respect to fuel price:
  At sample averagea -0.322 -0.433 -0.249 -0.279 -0.146
  At US 2000-2009 avg.b -0.213 -0.309 -0.130 -0.269 -0.136

Notes:

  Model 3.55

aElasticities measured at sample average values of pm , inc , & Urban  for years 1966-2009.
bElasticities measured at sample average values of pm , inc , & Urban  for years 2000-2009.

  Model 3.21b

 
 

4. Conclusion 

 

The research reported here, extending Small and Van Dender (2007) with data through 

2009, confirms the findings of previous studies that the long-run rebound effect, measured over a 

period of several decades extending back to 1966, is close to 30%. We also find a short-run (one-

year) rebound effect, again averaged over that entire period, of about 4.7%.  

Furthermore, we confirm earlier findings that the rebound effect became substantially 

smaller in magnitude over the course of that time period, probably due to a combination of 

higher real incomes, lower real fuel costs, and higher urbanization. Our base model (Model 3.3) 

implies that the long-run rebound effect is 17.8% when evaluated at average values of income, 

fuel cost, and urbanization over the years 2000-2009. 

We also report some new findings. There is strong evidence of asymmetry in 

responsiveness to price increases and decreases. This makes interpretation of the rebound effect  

more difficult, because it accentuates the unresolved question as to whether travelers respond to 

a change in fuel efficiency in the same way as to a change in fuel price.  

In both symmetric and asymmetric response models, there is an upward shift in the 

rebound effect, of 2.5 to 2.8 percentage points, starting in 2003. We introduce two new variables, 
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which together explain about half of this shift. The first is media coverage of fuel prices; the 

second is fuel-price volatility. Both substantially increase travelers’ responsiveness to changes in 

fuel price and/or fuel cost. Nevertheless, these influences are small enough in magnitude that 

they do not fully offset the downward trend in VMT response elasticities due to higher incomes 

and other factors. Hence even assuming the variables retain their 2000-2009 values into the 

indefinite future, they would not prevent a further diminishing of the magnitude of the rebound 

effect if incomes continue to grow at anything like historic rates. 
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Appendix A.  Data 

 

A.1 Variables used 

 

Variables used in our base model are described below. For data sources, see Small and Van 

Dender (2007b) and Hymel et al. (2010). 

 

Dependent Variables 
M: Vehicle miles traveled (VMT) divided by adult population, by state and year (logarithm: 

vma, for “vehicle-miles per adult”). 
V: Vehicle stock divided by adult population (logarithm: vehstock). 
1/E: Fuel intensity, measured as F/M, where F is highway use of gasoline30 (logarithm: fint). 
C: Total hours of congestion delay in the state divided by adult population (logarithm: cong). 

See Section 3.1 for further details 
 

Independent Variables other than CAFE 
PM: Fuel cost per mile, PF/E. Its logarithm is denoted pm ≡ ln(PF)–ln(E) ≡ pf+fint. For 

convenience in interpreting interaction variables based on pm, we have normalized it by 
subtracting its mean over the sample. 

PV: Index of real new vehicle prices (1987=100) (logarithm: pv). 31 
PF: Price of gasoline, deflated by consumer price index (1987=1.00) (cents per gallon). 

Variable pf is its logarithm normalized by subtracting the sample mean. 
Other:  See Small and Van Dender (2007b), Appendix A; and Small, Hymel, and Van Dender 

(2010), Appendices A and B. The first three equations include time trends to proxy for 
unmeasured trends such as residential dispersion, other driving costs, lifestyle changes, and 
technology. As described below, in equation (8), the set of variables denoted XM includes 
the variable (pm)2 and interactions between normalized pm and other normalized variables: 
log real per capita income (inc), and fraction urbanized (Urban – used only in the three-
equation model) and normalized cong (used only in the four-equation model). 

 

30 This term is used by FHWA to mean use by vehicles traveling on public roadways of all types. It excludes use by 
not licensed for roadways, such as construction equipment and farm vehicles. 

31 We include new-car prices in the second equation as indicators of the capital cost of owning a car. We exclude 
used-car prices because they are likely to be endogenous; also reliable data by state are unavailable. 
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A.2 Adjustments to State population data 

 

Several variables specification, including all but one of the endogenous variables, make 

use of data on adult or total state population as a divisor. Such data are published by the U.S. 

Census Bureau as midyear population estimates; they use demographic information at the state 

level to update the most recent census count, taken in years ending with zero. However, these 

estimates do not always match the subsequent census count, and the Census Bureau does not 

update them to create a consistent series. As a result, the published series contains many 

instances of implausible jumps in the years of the census count. In both of our earlier published 

papers, we applied a correction assuming that the actual census counts taken every ten years are 

accurate, and that the error in estimating population between them grows linearly over that ten-

year time interval. This approach is better than using the published estimates because it makes 

use of Census year data that were not available at the time the published estimates were 

constructed (namely, data from the subsequent census count).  See Small and Van Dender 

(2007b) for details.  

For this paper, the same procedure was applied to the 2001-2009 data using Census 

counts for 2010. This adjustment was not made for the post-2000 data in the earlier papers due to 

unavailability at that time of the 2010 Census counts. 

 
Additional references 
 
Small K.A. and K. Van Dender (2007b). “Fuel Efficiency and Motor Vehicle Travel: The 
Declining Rebound Effect,” Working Paper No. 05-06-03, Department of Economics, University 
of California at Irvine (revised). 
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Appendix B.  Additional estimation results 
 
B.1 Models including unemployment rate: selected results 
 

Table B1. Three-equation models with and without unemployment variables 
 
 

Equation and variable: Coeff. Std. 
Error

Coeff. Std. 
Error

Coeff. Std. 
Error

Coeff. Std. 
Error

Coeff. Std. 
Error

Coeff. Std. 
Error

vma  equation:
pm= pf+ fint -0.0466 0.0029 -0.0416 0.0038 -0.0464 0.0029 -0.0429 0.0031 -0.0639 0.0049 -0.0601 0.0052

pf_cut + fint 0.0340 0.0078 0.0302 0.0079
pm*dummy_0309 -0.0251 0.0076 -0.0230 0.0079
pf * (Media_dummy )
pm* log(varpf )

pm*inc 0.0528 0.0108 0.0521 0.0110 0.0699 0.0121 0.0694 0.0122 0.0577 0.0107 0.0620 0.0107
pm2 -0.0124 0.0059 -0.0176 0.0060 -0.0113 0.0060 -0.0148 0.0060 -0.0207 0.0061 -0.0242 0.0061
pm*Urban 0.0119 0.0094 0.0142 0.0098 0.0078 0.0096 0.0075 0.0097 0.0131 0.0093 0.0117 0.0093
Unemployment rate -0.0015 0.0005 -0.0017 0.0005 -0.0011 0.0005
vma lagged 0.8346 0.0102 0.8380 0.0104 0.8279 0.0105 0.8306 0.0106 0.8334 0.0104 0.8348 0.0104

veh  equation
Unemployment rate -0.0029 0.0007 -0.0029 0.0007 -0.0028 0.0007

fint equation:
pf + vma -0.0050 0.0041 -0.0143 0.0043 -0.0052 0.0041 -0.0140 0.0043 -0.0097 0.0060 -0.0308 0.0070

pf_cut + vma
Unemployment rate 0.0047 0.0007 0.0043 0.0007 0.0056 0.0008

Model 3.21b Model 3.21cModel 3.3 Model 3.3c Model 3.18 Model 3.18c
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B.2 Full estimation results for preferred models 
 

Table B2 Full estimation results for preferred models 

Equation Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.
vma intercept 1.6261 0.1022 3.1468 0.3541 2.6249 0.4077
vma inc 0.0781 0.0117 0.0770 0.0118 0.0667 0.0129
vma Adults / road mile -0.0149 0.0038 -0.0151 0.0037 -0.0133 0.0039
vma popratio 0.0726 0.0322 0.0630 0.0323 -0.0024 0.0364
vma Urban -0.0205 0.0391 -0.0061 0.0395 -0.0122 0.0406
vma Railpop -0.0067 0.0043 -0.0082 0.0042 -0.0075 0.0044
vma D7479 -0.0439 0.0034 -0.0445 0.0035 -0.0490 0.0038
vma Trend -0.0004 0.0002 0.0013 0.0004 0.0011 0.0005
vma vma(-1) 0.8346 0.0102 0.8334 0.0104 0.8439 0.0108
vma vehstock 0.0209 0.0067 0.0161 0.0067 0.0142 0.0069
vma pm = pf + fint -0.0466 0.0029 -0.0639 0.0049 -0.0325 0.0088
vma pm^2 -0.0124 0.0059 -0.0207 0.0061 0.0204 0.0100
vma pm*inc 0.0528 0.0108 0.0577 0.0107 0.0620 0.0113
vma pm*Urban 0.0119 0.0094 0.0131 0.0093 0.0025 0.0099
vma pfcut + fint 0.0340 0.0078 0.0242 0.0089
vma pf*Media_dummy -0.0412 0.0102
vma pm*Price_volatility -0.0018 0.0005
vma AR(1) -0.1018 0.0204 -0.1021 0.0204 -0.1012 0.0208
vma State fixed effects yes yes yes
veh intercept -0.2253 0.1452 -0.2188 0.1449 -0.2206 0.1448
veh pnewcar 0.0400 0.0317 0.0460 0.0317 0.0458 0.0317
veh interest -0.0008 0.0042 -0.0004 0.0042 -0.0006 0.0042
veh income 0.0032 0.0146 0.0038 0.0146 0.0038 0.0146
veh adults / road mile -0.0136 0.0060 -0.0137 0.0060 -0.0137 0.0060
veh licenses/adult 0.0345 0.0184 0.0349 0.0183 0.0351 0.0183
veh trend 0.0002 0.0007 0.0004 0.0007 0.0004 0.0007
veh vehstock(-1) 0.9318 0.0104 0.9316 0.0104 0.9317 0.0104
veh vma 0.0291 0.0147 0.0281 0.0146 0.0283 0.0146
veh pm 0.0013 0.0058 0.0019 0.0058 0.0018 0.0058
veh AR(1) -0.1461 0.0230 -0.1469 0.0230 -0.1467 0.0230
veh State fixed effects yes yes yes
fint intercept -0.2447 0.0631 0.9282 1.0517 1.4590 1.0132
fint pf + vma -0.0050 0.0041 -0.0097 0.0060 -0.0109 0.0058
fint inc -0.0016 0.0144 0.0000 0.0146 -0.0017 0.0144
fint fint(-1) 0.9040 0.0100 0.8977 0.0115 0.8947 0.0115
fint popratio -0.0168 0.0603 -0.0005 0.0586 0.0300 0.0600
fint Trend66-73 0.0005 0.0011 -0.0005 0.0011 0.0001 0.0011
fint Trend74-79 -0.0068 0.0010 -0.0061 0.0011 -0.0063 0.0011
fint Trend80+ -0.0007 0.0003 -0.0002 0.0007 0.0002 0.0007
fint D7479 -0.0070 0.0048 -0.0032 0.0048 -0.0022 0.0048
fint Urban -0.0905 0.0467 -0.0890 0.0471 -0.0863 0.0467
fint cafe -0.0345 0.0108 -0.0256 0.0183 -0.0103 0.0171
fint pfcut + vma 0.0143 0.0123 0.0210 0.0119
fint AR(1) -0.1773 0.0201 -0.1804 0.0202 -0.1858 0.0202
fint State fixed effects yes yes yes

Model 3.3 Model 3.21b Model 3.55
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