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Abstract

Regression Discontinuity (RD) models identify local treatment effects by as-
sociating a discrete change in the mean outcome with a corresponding discrete
change in the probability of treatment at a known threshold of a running vari-
able. This paper shows that it is possible to identify the RD model treatment
effect without a discontinuity. In particular, identi�cation can come from a slope
change (a kink) instead of a discrete level change (a jump) in the treatment prob-
ability. The intuition is based on L'hopital's rule. The identi�cation results can
also be interpreted using instrumental variables models. Estimators are proposed
that can be applied in the presence or absence of a discontinuity, by exploiting ei-
ther a jump, or a kink, or both. The proposed estimators are applied to investigate
the "retirement-consumption puzzle." In particular, I estimate the impact of re-
tirement on household food consumption by exploiting changes in the retirement
probability at 62, the early retirement age in the US.
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1 Introduction

Let T be a binary indicator for some treatment such as participation in a social program or

repeating a grade (grade retention) in school, let Y be some associated outcome of interest

such as employment or academic performance, and let X be a so-called running or forcing

variable that affects both T and Y . For example, X could be age or the income level that

affects eligibility for a social program, or an exam score affecting a grade retention decision.

In the standard Regression Discontinuity (RD) framework, the probability of treatment given

by f .x/ D E .T j X D x/ changes discretely at a threshold point x D c. Under general

conditions, this discontinuity or jump in f .x/, along with any observed corresponding jump

in the mean outcome g .x/ D E .Y j X D x/ at x D c, can be used to recover a local average

treatment effect. See, e.g., Hahn, Todd, and van der Klaauw (2001), Imbens and Lemieux

(2008), chapter 6 of Angrist and Pischke (2008), Imbens and Wooldridge (2009), and Lee and

Lemieux (2010). The intuition is that if X and all other observed and unobserved covariates

determining Y and T are continuous at the threshold c, then individuals having X just below

the threshold will be comparable to those having X just above, and hence may provide valid

counterfactuals. In particular, any difference in their mean outcomes can be attributed to their

treatment probability change.

In this paper I show that the RD local average treatment effects that are usually identi�ed

by discontinuities can still be identi�ed even if there is no discontinuity or jump, given that

there is a kink, i.e., a discrete change in slope in f .x/ at x D c. I also provide estimators that

can be used regardless of whether identi�cation comes from a jump, a kink, or both. Just as the

standard RD treatment effect estimator is numerically equivalent to an instrumental variable

(IV) estimator (Hahn, Todd, van der Klaauw, 2001), I show that the proposed estimators are

numerically equivalent to IV estimators.

This paper's results can be applied in situations where the compliance rate changes less

dramatically than required by standard RD models. For example, if the bene�ts or incentives
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for taking up treatment depend on one's distance from the threshold, or an administrator's

discretion or incentive to assign treatment depends on one's distance to the threshold, then

the added probability of treatment associated with crossing a threshold may rise as one gets

further away from the threshold rather than jumping the moment the threshold is crossed. This

would cause slopes to change at the threshold. When parametric models are employed in a

RD design in the existing literature, information is implicitly exploited on �rst derivatives by

allowing for different slopes on either side of the discontinuity threshold, so the pure kink case

can be taken as an extreme case where the jump at the threshold is essentially zero. 1 In these

cases, treatment effects based on standard RD estimators would either be weakly identi�ed,

if the jump is small, or unidenti�ed if the jump is zero, regardless of how much the slope

changes. In contrast, the estimators proposed in this paper make use of any changes in either

the intercept or the slope of the treatment probability at the point x D c.

Jacob and Lefgren (2004) examine the effect of remedial education programs, including

grade retention, on later academic performance, where the treatment, grade retention, is in-

curred by failing summer school tests. They note that "the probability of retention does not

drop sharply (discontinuously) at the exact point of the cutoff , ...it rapidly decreases over a

narrow range of values just below the cutoff." Indeed, their Figure 6 (reproduced in Figure 1

here) shows a dramatic slope change instead of a discontinuity in the retention probability at

the cutoff (normalized to zero).2 In this case, the standard RD estimation based on a discrete

change in the treatment probability is not suitable, whereas the estimators proposed in this

paper can still apply.

In some potential applications of RD models, there is debate about whether the probability
1In some cases, policy rules could directly generate kinks if the provided bene�ts (punishment) for taking up

(not taking up) the treatment depends on the distance from the cutoff.
2Because of the uncertainty regarding both performance and the grading metric in their case, they note par-

ticularly that it is unlikely that a student would have the incentive or ability to marginally change her test score
near the cutoff. This rules out the possibility that the observed kink is due to test takers' endogenous behavior.
Also, test scores in this case are grade equivalents (GEs), which are typically reported up to the tenths place, and
are not really continuous. However, the discreteness of the running variable tends to enlarge the discontinuity
gap in this case, so using a more re�ned measure of the test score is not likely to yield a signi�cant jump either.
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Figure 1: Retention Rate and Reading Test Scores Relative to the Cutoff

of treatment actually jumps at a threshold. When a discrete change is small, it could be

indistinguishable from a kink. An example is Figure 2, which reproduces Figure 4 from Card,

Dobkin, and Maestas (2008), showing the employment rates in the US by age. It is dif�cult to

determine whether a small jump appears at age 65, the eligibility age for full social security

bene�ts, but there is an obvious difference in slopes above and below this threshold. The

estimators proposed in this paper might then be used to identify the impact of employment

on outcomes like heath conditions among the close to retirement age people, based just on

the knowledge that the propensity to work has either a jump or a kink at 65. Since age (in

quarters) is used as a running variable, individuals are not likely to manipulate their age to sort

near the cutoff, and so the observed kink should not be caused by endogenous sorting.

For simplicity, this paper will mostly not deal with covariates other than the running vari-

able X in the analysis. The standard RD argument applies that covariates are generally not

needed for consistency in estimating the average (unconditional) treatment effect, though they
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Figure 2: Employment Rates by Age and Demographic Group (1992�2003 NHIS)

may be useful for ef�ciency or for testing the validity of RD assumptions. However, if desired,

additional covariates Z could be included in the analysis by letting all the assumptions hold

conditional upon the values Z may take on.3 In applications, one could either partial out these

covariates prior to analysis, or include them in the models as additional regressors.

I apply the proposed estimators to estimate the impact of retirement on household food

consumption at 62, the early retirement age in the US. Graph analyses show that food con-

sumption and retirement may have a jump and/or a kink at 62, so estimators based on either a

jump, or a kink, or both are performed. It's shown that using either one or both sharp changes

in the retirement probability at 62 yields very similar estimates and that the results are ro-

bust to different estimation windows (bandwidths) and weightings (kernel functions). Food

consumption is estimated to drop by about 15% to 23% when household heads retire at 62.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
3Conditional on Z is necessary if treatment effects vary across covariate values and if one is interested in

estimating conditional treatment effects.
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Section 3 provides the main identi�cation results. Section 4 gives an instrumental variables

interpretation of the identi�cation results. Section 5 discusses some extensions, including pos-

sible identi�cation based on higher order derivatives. Section 6 provides associated estimators.

Section 7 presents an empirical application, and Section 8 concludes.

2 Literature Review

This section reviews two strands of literature, the standard RD literature and the recent re-

gression kink design literature. This paper is directly built upon the standard RD literature,

which is originated in Thistlethwaite and Campbell (1960). Important theoretical research on

RD analysis includes Hahn, Todd, and van der Klaauw (2001), Porter (2003), Lee (2008), Lee

and Card (2008), McCrary (2008), Imbens and Kalyanaraman (2009). Recent comprehensive

reviews of the RD literature include Imbens and Lemieux (2008), van der Klaauw (2008), and

Lee and Lemieux (2010).

In a seminal paper, Hahn, Todd, and van der Klaauw (2001) formally show the RD identi-

�cation in the treatment effect framework and provide assumptions required to identify causal

effects. They also propose local linear estimators for nonparametric estimation of the RD

treatment effect. Porter (2003) proposes alternative nonparametric estimators and discusses

optimal convergence rates. Lee (2008) establishes weak behavioral conditions under which

causal inferences from RD analysis can be credible. In particular, Lee (2008) shows that when

agents have only imprecise control over the running variable and hence the running variable,

along with other covariates, is continuous at the cutoff (due to the random component), RD

analysis can still deliver valid inferences. The author proposes to test this assumption by ex-

amining whether baseline covariates are continuous at the threshold of the running variable.

McCrary (2008) develops a formal density test to test the manipulation of the running variable.

Lee and Card (2008) consider the case when the running variable is discrete. They interpret
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deviations of the chosen approximating regression function from the true regression function

as random speci�cation errors and discuss the impact of this on inference. In particular, they

propose how to make the standard errors correct and do possibly more ef�cient estimation in

this case. Imbens and Kalyanaraman (2009) discuss the optimal bandwidth choice for RD

models.

A recently developed literature considers a regression kink design. The concept of regres-

sion kink design (RKD) is �rst introduced by Nielsen, Sorensen, and Taber (2009) in their

study of �nancial aid effect on college enrollment. They also propose an associated estimand

for their RKD in their application. The estimand takes the form of the ratio of the slope change

or kink in the conditional mean of outcome and the kink (the subsidy rate change) in the mag-

nitude of a continuous treatment (the amount of subsidy) as a function of the running variable

(family income). Other empirical studies that use kinks to identify effects of continuous en-

dogenous regressors include Guryan (2003) and Simonsen et al. (2009).

Building upon Nielsen, Sorensen, and Taber (2009), the paper by Card, Lee, and Pei (2009)

considers nonparametric identi�cation of the average marginal effect of a continuous endoge-

nous treatment variable in a generalized nonseparable model when the treatment of interest

is a known, deterministic but kinked function of an observed continuous assignment variable.

They characterize a broad class of models for which a RKD provides valid inferences re-

garding the underlying marginal effects. Under suitable conditions they show that the RKD

estimand identi�es the "treatment on the treated" parameter.

The models in Nielsen, Sorensen, and Taber (2009) and Card, Lee, and Pei (2009) can be

taken as sharp designs in the sense that everyone is a complier and obeys the same treatment

assignment rule. The treatment is continuous and is assumed to be a known deterministic func-

tion of the running variable. The fundamental identi�cation problem is then to separate the

effect of the possibly endogenous running variable from that of treatment in a general nonpara-

metric model, because the latter is completely determined by the former. The identi�cation is
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based on the magnitude of the treatment as a kinked function of the running variable.

The goal of this paper, however, is to estimate the same treatment effect parameter of

interest as in the standard RD literature, but under more general conditions. In particular, this

paper considers a fuzzy design where the treatment is binary, and the functional form for the

treatment is unknown. As in the standard RD literature, the estimated effect is a local average

effect for those who take up the treatment when crossing a threshold value of the running

variable. The identi�cation is based on a kink and/or a jump.

The purely kink-based estimand (Theorem 1) in this paper super�cially resembles the

RKD estimand as in Nielsen, Sorensen, and Taber (2009) and Card, Lee, and Pei (2009). A

key difference is that the RKD estimand depends on the derivative of the treatment variable,

which would be infeasible when treatment is binary, while the estimand here depends on the

derivative of the expected value of a binary treatment, i.e., the treatment probability. This

paper also discusses generalizations that work regardless of whether the treatment probability

has a jump, a kink, or both. In addition, this paper shows the identi�cation results (and the

proposed estimators) can be intuitively interpreted using IV models. This extends the known

result that the standard RD estimator is numerically equivalent to an IV estimator although the

IV validity assumption does not hold, as noted by Hahn, Todd, and van der Klaauw (2001).

3 RD Treatment Effects without A Discontinuity

I will use Rubin's (1974) potential outcome notation. Let Y .1/ and Y .0/ denote an in-

dividual's potential outcomes from being treated or not, respectively. The observed out-

come can then be written as Y D Y .1/ T C Y .0/ .1� T /. As in the introduction, de�ne

g .x/ D E .Y j X D x/ and f .x/ D E .T j X D x/, so g .x/ and f .x/ are the expected out-

come and expected probability of treatment when the running or forcing variable is X D x . In

the standard RD model one would expect both f .x/ and g .x/ to have a jump (discontinuity)
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at the �xed threshold x D c.

Let T � be a dummy for crossing the threshold c, i.e., T � D I .X � c/, so T � is one for

individuals who have X above the threshold and zero otherwise. An individual is de�ned to be

a complier if he has T D T � when assigned X D x for all x in some neighborhood of c, so a

complier is an individual who takes up treatment if and only if he crosses the threshold. Let D�

be a binary indicator for compliers, i.e., D� D 1 if an individual is a complier and 0 otherwise.

E .D� j X D x/ then equals the compliance rate among all individuals having X D x for

x in a neighborhood of c. We do not observe D� and so do not know who are compliers.

Assumption A1 below and Lemma 1 later make it clear that by conditioning on compliers,

one does not have to impose additional conditions like the conditional mean independence or

alternative assumptions as imposed by Hahn, Todd, and van der Klaauw (2001, Theorem 2)

for identi�cation of the RD model treatment effect in a general setup.

The standard RD model requires E .D� j X D c/ 6D 0, which would result in f .x/ having

a discontinuity at c. The sharp design RDmodel is the special case where E .D� j X D c/ D 1

so everyone is a complier.

ASSUMPTION A1: Assume that for each unit (individual) i we observe Yi , Ti , and X i .

The threshold c is a known constant. The conditional means E.Y .t/ j X D x; D� D 1/ for

t D 0; 1, E.Y j X D x; D� D 0/, and E.T j X D x; D� D 0/, as well as E.D� j X D x/, are

continuously differentiable for all x in a neighborhood of x D c.

For ease of notation I will drop the i subscript when referring to the random variables Y ,

T , and X .

Assumption A1 says that for compliers the conditional mean potential outcomes E.Y .t/ j

X D x; D� D 1/ for t D 0; 1 are smooth, for noncompliers the conditional mean outcome

E.Y j X D x; D� D 0/ and treatment probability E.T j X D x; D� D 0/ are smooth,

and the treatment probability change or the compliance rate E.D� j X D x/ is also smooth.

All this required smoothness is in the sense of continuous differentiability. Intuitively, these
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assumptions rule out individuals' sorting behavior, i.e., it is assumed that individuals can not

precisely manipulate the running variable to be just above or below the threshold and hence

take or avoid the treatment (more discussion on this can be found in Lee 2008). These as-

sumptions also rule out de�ers (or de�ers, i.e., individuals who have T D 1 � T � for all x in

the neighborhood of c), guaranteeing that any jumps or kinks in the outcome or the treatment

probability are due only to compliers. Below provides further discussion.

Assumption A1 differs from the standard RD assumptions in requiring more smoothness.

For example, standard RD models require only continuity of the conditional mean potential

outcomes for identi�cation rather than continuous differentiability. This paper requires addi-

tional smoothness to rule out not only jumps but also kinks (formally de�ned below) caused

by factors other than changes in the treatment probability at the threshold x D c. In practice,

estimators of standard RD models generally impose at least as much smoothness as Assump-

tion A1. For example, standard asymptotic properties of kernel or local linear regressions

require continuous differentiability. Similar continuous differentiability of conditional poten-

tial outcomes in the running variable X is also used by Dong and Lewbel (2010) to identify

the treatment effect change given a marginal change in the threshold.

Assumption A1 imposes smoothness on the conditional mean potential outcomes partic-

ularly for compliers (D� D 1).4 One could instead impose smoothness without conditioning

on D� D 1 by having either a constant treatment effect or a local conditional independence of

treatment assumption, i.e., having potential outcomes conditional on X D x be independent

of treatment in a neighborhood of x D c, as in Hahn, Todd, and van der Klaauw (2001).

For noncompliers (D� D 0), Assumption A1 requires their conditional mean outcome

E.Y j X D x; D� D 0/ to be smooth at the cutoff, so the observed outcome difference when

crossing the threshold are from compliers. By assuming smoothness of E.T j X D x; D� D
4Intuitively, the smoothness of potential outcomes along with the de�nition of compliers means that among

compliers those just below the cutoff would provide valid counterfactuals for those just above. Note that this still
allows for self-selection into the group of compliers.

10



0/, Assumption A1 rules out a positive probability of de�ers.

One way to interpret the smoothness of E.Y j X D x; D� D 0/ is to assume that there

exists a small neighborhood of c where noncompliers consist of always-takers and/or never-

takers. Then a suf�cient condition for the smoothness of the conditional mean outcome for

noncompliers would be continuous differentiability of their conditional mean potential out-

comes, i.e., E.Y .t/ j X D x; D� D 0/ for t D 0; 1. This is due to the fact that for both

always-takers and never-takers, treatment status does not change and hence is smooth when

crossing the threshold, i.e., treatment is always one for always-takers, and zero for never-

takers, and that E.T j X D x; D� D 0/ and E.D� j X D x/ are assumed to be smooth at the

cutoff.

Smoothness of E.T j X D x; D� D 0/, i.e., no de�ers, means that E.D� j X D x/

equals the change in the treatment probability at X D x . The smoothness of E.D� j X D x/

then guarantees that its ordinary derivative exists and that its one-sided derivatives equal the

ordinary derivative at x D c.

Results in this paper require one-sided limits and one-sided derivatives. For any function

h .x/, de�ne (when they exist) hC .x/ and h� .x/ as the right-sided and left-sided limits, and

de�ne h0C .x/ and h0� .x/ as the right-sided and left-sided derivatives, respectively. Also let

h0 .x/ D @h .x/ =@x . A standard result is that if h .x/ is differentiable, then h0C .x/, h0� .x/,

and h0 .x/ exist and h0C .x/ D h0� .x/ D h0 .x/. With these notations, a discontinuity at x D c

means fC .c/� f� .c/ 6D 0, and the treatment effect estimated by standard RD models can be

written as .gC.c/� g�.c// = . fC.c/� f�.c//.

LEMMA 1: If Assumption A1 holds then

gC.c/� g�.c/ D � .c/ E
�
D� j X D c

�
(1)
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and

fC.c/� f�.c/ D E
�
D� j X D c

�
, (2)

where

� .c/ D E
�
Y .1/� Y .0/ j X D c; D� D 1

�
. (3)

Proofs are in the Appendix. Lemma 1 shows that Assumption A1 suf�ces to reproduce the

standard result in the RD literature. In particular, it follows immediately from Lemma 1 that

if there is a discontinuity, meaning that fC.c/� f�.c/ 6D 0, then

� .c/ D
gC.c/� g�.c/
fC.c/� f�.c/

. (4)

That is, the standard RD treatment effect estimator estimates � .c/ D E.Y .1/�Y .0/ j X D c;

D� D 1/, the average treatment effect for the compliers (D� D 1) at the threshold c, as

discussed in, e.g., Hahn, Todd, and van der Klaauw (2001) and Imbens and Lemieux (2008).

Note that if one is willing to assume locally constant treatment effects, then Assumption

A1 could be extended to allow for de�ers as follows. Let d� be a binary indicator for de�ers,

so d� D 1 for individuals who have T D 1 � T � when assigned X D x for all x in the

neighborhood of c. Then in addition to assuming smoothness of E.Y .t/ j X D x; D� D 1/,

one also needs to similarly assume smoothness of E.Y .t/ j X D x; d� D 1/. Furthermore,

one needs to replace E.Y j X D x; D� D 0/ and E.T j X D x; D� D 0/ in Assumption

A1 with E.Y j X D x; D� D d� D 0/ and E.T j X D x; D� D d� D 0/, respectively, and

replace E.D� j X D x/ with E.D� � d� j X D x/. In this case, Lemma 1 would hold by

replacing equation (2) with fC.c/� f�.c/ D E.D�� d� j X D c/ and replacing equation (3)

with � .c/ D E .Y .1/� Y .0/ j X D c/.

I now consider identifying this RD model treatment effect under alternative assumptions.
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In particular, I consider: What if there is no jump in the treatment probability? Can we still

identify the RDmodel treatment effect when there is no discontinuity? Formally de�ne a jump

and a kink as follows.

DEFINITION: At the point x , a jump in the function f .x/ (or simply a jump) is de�ned

as fC .x/ � f� .x/ 6D 0 and a kink in the function f .x/ (or simply a kink) is de�ned as

f 0C .x/� f 0� .x/ 6D 0.

THEOREM 1: Let Assumption A1 hold. Assume there is a kink but no jump at x D c.

Then

�.c/ D
g0C .c/� g0� .c/
f 0C .c/� f 0� .c/

: (5)

First note that Assumption A1 suf�ces to guarantee that the one-sided derivatives g0C .x/,

g0� .x/, f 0C .x/, and f 0� .x/ exist at x D c. Theorem 1 says that if there is no jump in f .x/,

then the treatment effect will equal the ratio of the kinks in g.x/ and f .x/ at x D c instead

of the ratio of the jumps. The reasoning is that if f .x/ does not have a jump, then both the

denominator and the numerator of the standard RD estimator given by equation (4) will equal

zero as x goes to c. In this case, by L'hopital's rule, that ratio will equal the ratio of derivatives

of the numerator and denominator, given that these derivatives exist.

Theorem 1 requires that the slope of the treatment probability changes at the threshold,

which provides identi�cation. So unlike in the standard RD model where the treatment effect

�.c/ is identi�ed off a jump in the treatment probability, here �.c/ is identi�ed off a kink.

In a standard RD model individuals just below the cutoff and those just above are com-

parable and so their mean outcome difference can be attributed to the treatment probability

change. Here, individuals just below the kink point and those just above are also comparable,

so one can use the slope change of their mean outcome and the associated slope change of

their treatment probability to identify the local average treatment effect at the cutoff.
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Just as jumps in the density of X or conditional means of other baseline covariates at

the threshold would cast doubt on the validity of the smoothness assumption in standard RD

models, unusual jumps and kinks in the density of X or conditional means of other baseline

covariates at the threshold would cast doubt on the validity of the smoothness assumption in

A1, and hence in this case, the identi�ed �.c/ in Theorem 1 would not be interpretable purely

as a causal effect. To address this concern, one can easily extend the standard RD validity

tests, e.g., tests on the smoothness of the density of the running variable and the smoothness

of the conditional means of covariates, to this paper's case.

A formal test of continuity of density can be found in McCrary (2008). More informally,

one could draw a histogram of X based on a �xed number of bins on each side of the cutoff.

The overall shape of the distribution can provide a sense whether there is an unusual jump or

kink in the density of X at the cutoff. Alternatively, on each side of the cutoff one could do a

linear regression of the number of observations in each bin on the mid-point value of each bin

and examine if there is a signi�cant intercept or slope change.

For other base-line covariates, analogous to the test suggested by Lee (2008) and Lee and

Lemieux (2010), one could do a parallel RD analysis by replacing the outcome variable Y

with these covariates and examine the signi�cance of the coef�cients on T , for which the

equation includes both a jump T � and a kink .X � c/T �. Finding a signi�cant effect of

treatment on these pre-determined baseline covariates would suggest unusual jumps or kinks

of these covariates at the cutoff. Alternatively, one could do local linear regressions of these

covariates at each side of the threshold to examine if there is an intercept or slope change in

those variables at the threshold.5

Combining Lemma 1 with Theorem 1 gives the following Corollary.

ASSUMPTION A2: Assume there is either a jump or a kink (or both) at x D c.
5The latter, when using a uniform kernel, visually corresponds to using a �xed number of bins on each side

of X D c and graphing the mean value of each covariate in each bin against the mid-point of those bins.
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COROLLARY 1: Let Assumptions A1 and A2 hold. Assume that the one-sided limits and

one-sided derivatives of f .x/ and g.x/ at x D c are identi�ed from the data. Then �.c/ is

identi�ed.

Given identi�cation, in the following I provide results that are more directly useful for

estimation. In each of the remaining theorems and corollaries, estimators are obtained by

replacing functions g and f with corresponding estimatesbg and bf .
THEOREM 2: Assume A1. If there is either a jump, or a kink, or both along with � 0.c/ D

0, then

�.c/ D
gC .c/� g� .c/C w

�
g0C .c/� g0� .c/

�
fC .c/� f� .c/C w

�
f 0C .c/� f 0� .c/

� (6)

for any w 6D � . fC .c/� f� .c// =
�
f 0C .c/� f 0� .c/

�
.

Theorem 2 uses a weight w to combine both the standard RD estimator (4) and the new

kink based estimator (5). When there is no jump, i.e., fC.c/ � f�.c/ D 0, then equation (6)

will reduce to equation (5). In practice, if one is sure that there is no jump, then it will generally

be preferable to base estimation directly on equation (5) rather than equation (6), because in

that case equation (6) will entail estimation of the terms fC .c/� f� .c/ and gC .c/� g� .c/,

which are known to equal zero if there is no jump.

When it is not clear whether there is a jump, a kink, or both, the above estimator can be

used as long as � 0.c/ D 0 holds, which might be appealing empirically. � 0.c/ D 0 means that

the treatment effect does not vary linearly with the running variable X , as in the case where

the treatment effect is locally constant. The proof of Theorem 2 shows that given � 0.c/ D 0,

both gC .c/� g� .c/ = . fC .c/� f� .c// and g0C .c/� g0� .c/ =
�
f 0C .c/� f 0� .c/

�
can be valid

estimands for the treatment effect �.c/. Intuitively, when the treatment effect varies linearly

with X , the kink based estimator would not converge to the local average treatment effect as

the jump based estimator does. However, note that � 0.c/ D 0 is a strictly weaker condition than

assuming a locally constant treatment effect, because the latter would imply that all derivatives
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of �.c/ were zero, not just the �rst derivative � 0.c/. I will discuss the interpretation of this

restriction in more detail in Section 3, and provide an extension to Theorem 2 in Section 4.

This extension will permit � 0.c/ to be non-zero.

Another use of Theorem 2 is to construct a simple test regarding locally constant treatment

effects when the treatment probability has both a jump and a kink. De�ne � 1 and � 2 by

� 1 D .gC .c/� g� .c// = . fC .c/� f� .c//

� 2 D
�
g0C .c/� g

0
� .c/

�
=
�
f 0C .c/� f 0� .c/

�
.

If the treatment effect is locally constant, then � 0.c/ D 0, and by Theorem 2 one will have

both � 1 D � 2 D �.c/, so one could test � 0.c/ D 0 by testing whether the difference between

the two corresponding estimates b� 1 and b� 2 is signi�cant. Failing this test indicates that the
treatment effect is not locally constant. For parametric RD models, this amounts to a simple

t test with the test statistic .b� 1 �b� 2/ =� .b�1�b�2/, where the denominator is the standard error of
the differenceb� 1 �b� 2.
The weight w could be chosen to maximize ef�ciency, i.e., choosing the value of w that

minimizes the estimated standard error of the corresponding estimate of �.c/. The following

Section 4 provides a two stage least squares estimator (2SLS) that uses weights based on a

measure of the relative strength of the two possible sources of identi�cation, the jump and

kink.6

Theorem 2 requires knowing either that there is no jump or that � 0.c/ D 0. The following

Corollary provides a weighted estimator that requires neither. The disadvantage of this Corol-

lary 2 versus Theorem 2 is that asymptotically Corollary 2 sets �.c/ equal to the standard RD

estimator when there is a jump, regardless whether there is a kink, whereas when � 0.c/ D 0

Theorem 2 can exploit information from both the jump and the kink to estimate �.c/.
6The result is not surprising. It is in fact a generic feature of 2SLS that when there exit more than one

instrumental variables, 2SLS uses ef�cient weights in combining these instrumental variables (see, e.g., Davidson
and MacKinnon, 1993).
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COROLLARY 2: Assume A1 and A2 hold. Given any sequence of nonzero weights wn

such that limn!1wn D 0, then

�.c/ D
gC .c/� g� .c/C wn

�
g0C .c/� g0� .c/

�
fC .c/� f� .c/C wn

�
f 0C .c/� f 0� .c/

� . (7)

The notable feature of Corollary 2 versus Theorem 2 is that it can be applied to construct

estimators for �.c/ that do not require the user to know whether an observed break at X D c

is a jump or a kink, or to know if the treatment effect is locally constant or not. In Section

4 I will show that the weights in the local 2SLS estimator, a special case of the proposed

estimator here, have this property. So Corollary 2 justi�es on a formal ground that local 2SLS

estimators utilizing both the jump and kink as IV's are valid estimators when one is not sure

whether there is a jump, a kink or both and they also do not impose constant treatment effects.

Estimators based on the above theorems and corollary will be discussed in more detail

later. For now observe that one could directly construct nonparametric estimators of gC .c/

and g0C .c/ as the intercept and slope of a local linear regression of Y on X � c just using

data having X > c. Doing the same with data having X < c will give estimators of g� .c/

and g0� .c/. Replacing Y with T in the local linear regressions above and below the threshold

will give estimates of fC .c/, f 0C .c/, f� .c/ and f 0� .c/. These could then be substituted into

equations (6) or (7) to obtain consistent estimates of �.c/.

4 Instrumental Variables Interpretation

This section provides an instrumental variables interpretation for the identi�cation results of

the previous section. This extends the known result by Hahn, Todd and van der Klaauw

(2001) that the standard RD fuzzy design estimator based on discontinuities is numerically
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equivalent to an IV estimator. I show that when there is either a jump, or a kink, or both, the

RD treatment effect estimators are numerically equivalent to IV estimators. I will also show

how instrumental variable methods can be used to construct simple estimators based on these

results.

Suppose that for c� " � X � cC " for some small positive ", one has the outcome model

Y D � C �.X � c/C �T C e; (8)

where �, �, and � are coef�cients, and the error e may be correlated with the treatment indi-

cator T . In general, e might also be correlated with X and hence T � for strictly positive ".

Hahn, Todd, and van der Klaauw (2001) show that the standard fuzzy design RD estimator

given by equation (4) is numerically equivalent to the IV estimator of � in equation (8), using

.X�c/ and T � as instruments for any given ", even though the IV zero correlation assumption

is violated. Continuity of potential outcomes (essentially continuity of X and e in this case)

at the threshold and having the bandwidth " ! 0 as the sample size n ! 1 establish the

consistency of the standard RD estimator.

The above model can be taken as a nonparametric regression function having X and hence

T � become independent of e (i.e., randomly determined) as " gets arbitrarily close to zero.

For compliers, treatment is entirely determined by T � and so is independent of e (randomly

assigned) in the arbitrarily small neighborhood of c, i.e., T ? e j D� D 1; X D x for

c�" � x � cC" as "! 0. The local randomness of T � assignment will hold if individuals, in

particular compliers who have x close to c, can not precisely manipulate the running variable

X , and hence they will be randomly distributed just above versus just below the threshold (see

details regarding this assignment mechanism in Lee, 2008).

For example, let T be a grade retention treatment, X be negative test score, and c be the

negative threshold score. T � then indicates whether one fails the test or not. Y could be

later academic performance, and one component of e could be ability, which in general is
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correlated with test score X and hence T �. Marginal students may try to be just below the

threshold and hence avoid the treatment; however, depending on whether or not they are lucky

on the test day, they will score randomly below or above the threshold, which implies a local

independence (randomization) of X and hence T � from e.

Since strictly speaking equation (8) holds only in the limit as " ! 0, the model does not

place any functional restrictions on the function � .c/. For example, if the true model contains

higher order terms like .X � c/2 or any interaction terms like .X � c/T and .X � c/2T , those

terms would converge to zero as " ! 0. Similarly, if the true model has other covariates

in it, or the treatment effect in the true model depends on covariates that are omitted, the

misspeci�cation of equation (8) may cause e to be correlated with X for " > 0; however,

in the limit as " ! 0 this correlation will go away, as long as the omitted covariates are

smooth at X D c. Therefore, � in the above equation would still consistently identify the

local average (unconditional) treatment effect even when there are omitted variables or when

there are unknown forms of treatment effect heterogeneity, as long as the omitted component

is smooth around the cutoff.

Note that e could still be correlated with T in the limit, due to the existence of noncom-

pliers whose treatment is not determined by T �. Correlation of e with T means that there

could be (self-)selection into treatment based on factors other than X that could affect Y . For

example, if the treatment is grade retention and the decision of who to retain is based both on

whether test score X is below a threshold and on teachers' judgments of who would bene�t the

most from being retained, then that judgement criterion could induce a correlation between T

and e.

If the treatment probability f .x/ has a jump at x D c, f .x/ will be correlated with

T � D I .X � c/, and then T � can be a valid instrument for T asymptotically in equation (8).

One could then estimate equation (8) using 2SLS, with instruments X � c and T �.

Similar to how a jump in f .x/ at x D c implies that T � can be used as an instrument,
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a kink in f .x/ at the threshold implies that the interaction term .X � c/ T � could also be an

instrument for T . So if there is no jump but a kink in the treatment probability, one would

still be able to use this kink, the slope change in the treatment probability, to identify the RD

model treatment effect.

To include either T �, or .X � c/ T �, or both as possible instruments for T , write the

reduced-form treatment as

T D r C s.X � c/C pT � C q.X � c/T � C V; (9)

for c � " � X � c C " for some arbitrarily small ", where r , s, p, and q, are the coef�cients

of this equation.

Substituting equation (9) into equation (8) yields the reduced form Y equation

Y D A1 C A2.X � c/C BT � C C.X � c/T � CU , (10)

where A1 D � C �r , A2 D � C � s, B D p� , C D q� , and U D �V C e.

Given equations (9) and (10), one has

fC.c/� f�.c/ D p, f 0C.c/� f 0�.c/ D q, (11)

gC.c/� g�.c/ D B, g0C.c/� g
0
�.c/ D C . (12)

Equations (9) and (10) with c � " � X � c C " are numerically identical to local linear

regressions of T and Y respectively on X , using a uniform kernel and bandwidth ". Since

the coef�cients in local linear regressions equal conditional means and derivatives of condi-

tional means regardless of their true functional forms (as long as they are suf�ciently smooth),

equations (11) and (12) would hold regardless of the true functional forms of Y and T .

Let y, t , t�, and z be Y , T , T �, and .X � c/ T � after partialling out .X � c/, respectively,
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i.e., they are the residuals from local linear regressions of Y , T , T �, and .X � c/ T � on a

constant and .X � c/. Then the �rst and second stage regression equations can be rewritten as

t D pt� C qz C v;

y D � t C e;

and the reduced form for y as

y D Bt� C Cz CU:

The IV estimator in this case is then

� D
cov .y; pt� C qz/
cov .t; pt� C qz/

D
cov .Bt� C Cz; pt� C qz/

cov .t; pt� C qz/

D
var .t�/ Bp C cov .t�; z/ .Bq C Cp/C var .z/Cq

cov .t; t�/ p C cov .t; z/ q

D

�
var .t�/ p C cov .t�; z/ q

�
B C

�
cov .t�; z/ p C var .z/ q

�
C

cov .t; t�/ p C cov .t; z/ q

D
cov .t; t�/ B C cov .t; z/C
cov .t; t�/ p C cov .t; z/ q

which is the same as

� D
w1B C w2C
w1 p C w2q

where the weights are given by w1 D cov .t; t�/ and w2 D cov .t; z/, so the relative weight

re�ects the relative strength of the two IVs, T � and .X � c/T �. Plugging in B, C , p, and q ,

gives

� D
w1B C w2C
w1 p C w2q

D
w1 .gC.c/� g�.c//C w2

�
g0C.c/� g0�.c/

�
w1 . fC.c/� f�.c//C w2

�
f 0C.c/� f 0�.c/

� . (13)

This shows that, the IV estimator in equation (13) is numerically equivalent to the special case

of the estimator in Theorem 2 where w D w2=w1.

In the above IV estimator, if q D 0 and p 6D 0, meaning there is a jump, but no kink,
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then C D 0 and w2 D 0, and hence � equals equation (4), which is the standard fuzzy design

RD treatment effect estimator. Identi�cation comes from T � being an instrument for T in this

case.

If p D 0 and q 6D 0, meaning there is no jump, but a kink, then B D 0 and w1 D 0, and

hence the IV estimator reduces to (5), which is the estimator proposed in Theorem 1. In this

case T � drops out of both the instrument equation (9) and the reduced form Y equation (10),

but .X � c/T � appears in both, providing an instrument for T . The resulting estimator for � ,

given by equation (5), equals the ratio of the coef�cients for T �.X � c/ in the reduced-form Y

and T equations, which con�rms that the slope change of the treatment probability provides

identi�cation.

Note that the local 2SLS estimator that has a variable bandwidth "! 0 as the sample size

n ! 1 has the property speci�ed in Corollary 2, i.e., asymptotically the local 2SLS puts a

zero weight on the slope change if there is a discrete jump. As the sample size n ! 1, the

bandwidth used in the local regressions shrinks to zero (using observations closer and closer

to the threshold), so X � c and hence .X � c/T � goes to zero, which makes z go to zero. It

follows that w2 D cov .t; z/, and hence w2=w1 goes to zero. So with the local 2SLS if there

is a jump, i.e., p D fC.c/ � f�.c/ 6D 0, the 2SLS weight w2=w1 D wn ! 0 as n ! 1.

Alternatively, if the treatment probability does not have a jump, i.e., p D fC.c/� f�.c/ D 0

and hence B D gC.c/ � g�.c/ D 0, then the weights are asymptotically irrelevant, since in

that case one has

w1B C w2C
w1 p C w2q

D
w2C
w2q

D
C
q
D
g0C.c/� g0�.c/
f 0C.c/� f 0�.c/

;

which by Theorem 1 is still equal to the local treatment effect parameter �.c/.
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5 Extensions

The previously described estimand in Theorem 2 uses either a jump, or a kink, or both, but

asymptotically if there is a jump, then the only case in which the kink information is used is

when � 0 .c/ D 0. As mentioned, having � 0 .c/ D 0 means that the treatment effect does not

vary linearly with X . For example, in the true parametric form, Y cannot be a function of

.X � c/T .

This section provides an extension of Theorem 2 to allow � 0 .c/ 6D 0, so the treatment

effect can vary linearly with the running variable X , while still exploiting information in both

a jump and a kink. For example, if the treatment is grade retention, the running variable is

test score, and the outcome is later academic performance, then � 0 .c/ 6D 0 would mean that

the effect of repeating a grade on later performance depends on the pre-treatment test score,

and in this case one still could use both jump and kink information to estimate the treatment

effect.

For convenience of notation, formally de�ne B.c/ D gC .c/ � g� .c/, C.c/ D g0C .c/ �

g0� .c/, p.c/ D fC .c/ � f� .c/, and q.c/ D f 0C .c/ � f 0� .c/. Further de�ne D.c/ D

g00C .c/ � g00� .c/ and r.c/ D f 00C .c/ � f 00� .c/. So B.c/, C.c/, D.c/, p.c/, q.c/, and r.c/

are the intercept (level), slope, and second derivative changes in the outcome functions and

the treatment probability, respectively. The proof of Theorem 1 shows that B 0.c/ D C.c/ and

p0.c/ D q.c/. Similarly it follows that B 00.c/ D D.c/ and p00.c/ D r.c/. Whenever possible,

I will drop the argument .c/, and simply use B, C , p, q , D, and r , but note that all these

parameters are in general functions of c.

THEOREM 3: Assume A1, A2, and further assume that the conditional means speci�ed

in A1 are continuously twice differentiable. If either there is no jump or � 00 .c/ D 0, then

� .c/ D
B C w .2qC � Dp/
p C w

�
2q2 � rp

� (14)
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for any weights w 6D �p=
�
2q2 � rp

�
. Similar estimands can be constructed if the d-th

derivative � .d/ .c/ D 0, as is the case if the treatment effect is up to a polynomial of degree

d � 1 in .X � c/, for any positive integer d.

The conditional means in Assumption A1 are twice differentiable, which guarantees that

all the involved derivatives in B, C , D, p, q, and r exist. They can be estimated by regression

coef�cients if one does local quadratic regressions using a uniform kernel at each side of the

cutoff c.

Analogous to Theorem 2, the assumption for Theorem 3 that � 00.c/ D 0 will hold if the

treatment effect is locally linear or locally constant. However, while a locally linear or con-

stant treatment effect is suf�cient for � 00.c/ D 0, it is stronger than necessary, because it

implies that all derivatives higher than the �rst are zero, instead of just the second derivative

being zero. With the assumption � 00 .c/ D 0, the corresponding estimator does not allow the

treatment effect to vary quadratically with .X � c/, because in this case the estimator using

the second derivative changes .2qC � Dp/ =
�
2q2 � rp

�
would not be a valid estimator for

the local treatment effect at c. So for example, in the parametric form, Y cannot be a function

of T .X � c/2, but can be a function of T or T .X � c/ or both.

Similar to the estimator in Theorem 2, when there is no jump, i.e., p D 0 and B D 0,

then the above estimator reduces to C=q, which is the estimator in Theorem 1. So when one

is sure there is no jump, it is more ef�cient to use the estimator in Theorem 1. Otherwise if

one assumes that the treatment effect is locally linear or locally constant, then this estimator

works regardless of whether there is a jump, a kink, or both, and exploits the identi�cation

information in both when both are present.

Construction of the estimator when � .d/ .c/ D 0 for any �nite d is brie�y discussed in the

Appendix. In this case, the treatment effect can be an arbitrarily high-order (e.g., up to the

.d � 1/-th order) polynomial of .X � c/, as long as the order is �nite.

From Theorem 3, one has the following corollary.
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COROLLARY 3: Assume A1 and A2 hold. Given any sequence of nonzero weights !n

such that limn!1 !n D 0, then

�.c/ D
B C !n .2qC � Dp/
p C !n

�
2q2 � rp

� (15)

Compared with the estimator in Corollary 2, when the treatment effect is locally linear

instead of locally constant, the above estimator uses this information, while the estimator in

Corollary 2 does not. In particular, for a local linear treatment effect model, given a kink

(q 6D 0), .2qC � Dp/ =
�
2q2 � rp

�
would be a valid estimator for the treatment effect �.c/

regardless whether there is a jump or not, while C=q is not unless there is no jump (p D 0/.

Note that the above estimator exploits possible higher order derivative changes for identi-

�cation. For example, in the absence of both a jump and a kink, the above estimator reduces to

D=r . Similar to C=q identifying the RD model treatment effect in the absence of a jump, ap-

plying L'hopital's rule to C=q gives D=r as a valid estimator when there is neither a jump nor

a kink, but a second derivative change. However, a possible disadvantage of using Corollary

3 for estimation instead of Corollary 2 is that Corollary 3 requires estimation of higher order

derivatives (second instead of �rst), which in practice might be very imprecisely estimated.

So far, all the estimators have been discussed without considering other covariates except

for X . It is worth emphasizing that if one is interested in estimating the average treatment

effect, or the unconditional treatment effect, covariates are not necessary for consistency, but

may be useful to increase ef�ciency or for robustness check. If desired, one can directly

include covariates in the treatment and outcome equations, or partial covariates out by �rst re-

gressing Y and T on covariates both above and below the threshold, and then use the residuals

from those regressions in place of Y and T in estimation.

If in a particular application, one believes that treatment effects vary with other covariates,
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and one is interested in estimating the conditional treatment effect, then covariates are neces-

sary. In this case, additional covariates Z can be included by letting all the assumptions hold

conditional upon the values Z may take on. The RD treatment effect estimators are then all

conditional on the speci�c value of Z . For estimation, one could directly include Z , allowing

Z to be interacted with T and X , as additional regressors in the local polynomial or IV regres-

sions. Or more generally, one can estimate the treatment effect conditional on a speci�c value

of Z , say z, i.e., estimate � .cjZ D z/.

6 Estimation

In this section I describe how to implement the proposed RD estimators. The estimation

methods provided here are not new. All that is new is their application to the Theorems in this

paper.

One convenient way to implement the proposed RD estimators is to do local linear or

polynomial regressions using a uniform kernel. The proposed estimators are simple functions

of these local linear or polynomial regression coef�cients. For example, one could estimate

gC .X/ D E.Y j X; T � D 1/ D BC C .X � c/CC and fC .X/ D E.T j X; T � D 1/ D

pC C .X � c/ qC by ordinary least squares regressions of Y and T on a constant and .X � c/

using observations right above the threshold c, and estimate g� .X/ D E.Y j X; T � D 0/ D

B� C .X � c/C� and f� .X/ D E.T j X; T � D 0/ D p� C .X � c/ q� using observations

right below the threshold. Here B, C , p, and q are constant regression coef�cients, and the

subscripts C and � denote whether they are estimated using data from above or below the

threshold. With these estimates the standard RD treatment effect estimator given a jump can

be estimated by

b� .c/ D bBC � bB�bpC � bp� : (16)

26



This estimator can also be implemented as the estimated coef�cient of T using IV estimation,

regressing Y on a constant, X � c, and T , using .X � c/ and T � as instrumental variables.

The RD treatment effect estimator given a kink but no jump at the threshold c (the estimator

in Theorem 1) can be estimated by

b� .c/ D bCC � bC�bqC �bq� . (17)

Equivalently, one could take b� .c/ to be the estimated coef�cient of T in an IV estimation,
regressing Y on a constant, X � c, and T , using .X � c/ and .X � c/T � as instrumental

variables.

The RD treatment effect estimator proposed in Theorem 2 can be implemented as

b�.c/ D bBC � bB� C bw �bCC � bC��bpC � bp� C bw .bqC �bq�/ . (18)

where the weight bw can be chosen to minimize the bootstrapped standard error forb�.c/. Al-
ternatively, equation (18) could be estimated by a 2SLS regression of Y on a constant, X � c,

T , and .X � c/T , using as instruments .X � c/, T �, and .X � c/T �. The resulting estimated

weights will then be as described in Section 4.

For all the estimators in the above, one could use the Delta method to calculate standard

errors. Alternatively, parametric IV estimation provides standard errors directly along with

the point estimate of the local average treatment effect.

These estimators can be interpreted as a special case of nonparametric local linear based

estimation, using a uniform kernel. The bandwidth might be chosen using cross validation or

other methods as described in, e.g., Ludwig and Miller (2007), Imbens and Lemieux (2008),

Imbens and Kalyanaraman (2009) or Lee and Lemieux (2010) and references therein. Just as

Hahn, Todd, and van der Klaauw (2001) and Porter (2003) recommend using local linear or

local polynomial estimation to reduce boundary bias in the estimated constant terms of these
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regressions, it might be advisable to use local quadratic or higher-order polynomial rather than

local linear estimation for reducing boundary bias in the derivative estimates.

To apply the estimator proposed in Theorem 3, where the treatment effect is allowed to

vary with X , one would need to estimate local quadratic or higher-order polynomial regres-

sions to obtain the second or higher-order derivatives involved in those estimators. Similarly,

IV estimation can be implemented using the higher-order interaction terms as additional in-

struments. Since these extensions are straightforward, I do not explicitly give their formulas

here.

7 Empirical Application

This section applies the results in the previous sections to estimate the effect of retirement on

food consumption using changes in the retirement probability at age 62, the early retirement

age in the US. The existing literature generally reports a greater change in retirement rates

around 62 than at the full retirement age 65 in US, which is con�rmed later in this paper's

sample.7

Many empirical studies document a signi�cant decrease in consumption at retirement. The

estimated drops range from about 10% to more than 40% (Ameriks et al. 2007). The �nding

that consumption drops at retirement is referred to as the �retirement-consumption puzzle,�

because a systematic fall in consumption is inconsistent with the life cycle/permanent income

hypothesis (LCPIH), which holds that rational people smooth consumption over their life-

cycle and so consumption should not fall when the future date of retirement is anticipated.

To the extent that retirement can be affected by a negative income or health shock such
7Starting from 62, individuals in the US are eligible for social security retirement bene�ts, which is docu-

mented to cause an increased probability of retirement. If one retires earlier than the normal (or full) retirement
age (NRA), typically 65 for the sample of individuals used in this paper, their social security bene�ts will be
reduced by a certain percentage for each month they retire earlier than the NRA, but the percentage schedule is
claimed to be set so that the expected values of life-time bene�ts are about the same regardless when one chooses
to retire. If this is true, then it may explain why there are no obvious sharp changes in retirement probabilities at
age 65.
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as a job loss or a disability (so that retirement is endogenous to consumption), the observed

consumption fall does not necessarily contradict the LCPIH. This section estimates the size

of the drop in household food consumption due to the household head's retirement, exploiting

changes in retirement probabilities when workers turn 62 and hence �rst become eligible for

social security retirement bene�ts. In this case, an RD model essentially compares individ-

uals who just turn 62 with those who are just under, and identi�es the retirement effect for

individuals who retire because they qualify for social security retirement bene�ts. Given that

the early retirement age 62 is fully anticipated, the estimated effect is then the causal impact

of retiring at 62. I examine food consumption because food is a nondurable good and so one

would expect immediate changes after retirement if any.

Food consumption here is measured by the total expenditure on food consumed at home,

delivered to door, and eaten out per week. Y is then de�ned as the logarithm of food consump-

tion adjusted for family size and composition using an equivalence scale. I use the equivalence

scale that was recommended to the US Census by the National Resource Council's Panel on

Poverty and Family Assistance (see Citro and Michaels 1995).89 Since multiple years' data

are used, food expenditures are adjusted for in�ation. T is the retirement treatment. X is

household head's age, and the cutoff c is 62. Retirement T is de�ned as the household head's

self-reported retirement status, which equals one when the household head is retired and zero

otherwise. The sample does not include non-labor-force participants, such as students, the

disabled, and homemakers.

The data are from the 1994 to 2007 US Panel Study of Income Dynamics (PSID). To
8This equivalence scale assigns a value of 1 to each adult and of 0.5 to each child in a household and raises

the sum of these assigned values to the power of 0.7.
9Instead of dividing food expenditure by family size, I divide it by an equivalence scale to account for

economies of scale to consumption (for food, these can take the form of reduced waste and other gains from
joint food preparation). In theory, consistency of the RD estimator when the bandwidth shrinks to zero does not
depend on the choice of equivalence scale, because the RD model assumes that family size and other related
variables are distributed smoothly around the cutoff, as is con�rmed in Figure 5 later. An equivalence scale
adjustment (especially for observations some distance from the cutoff) is mainly intended to improve ef�ciency
and reduce �nite sample bias.
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avoid measurement and behavioral issues associated with the use of food stamps, the sample

is restricted to households who did not use food stamps to buy food. Detailed information

on food expenditures and food stamp usage is available on a consistent basis in the PSID

starting from 1994. There are ten waves of data in this sample period (data are collected every

two years since 1997). Years 2001 and 2003 are arguably recession years, when individuals

may have different retirement and consumption behavior, so the analysis here focuses on the

sample excluding these two years of data. However the main results are reported both with

and without using these two years of data. The differences between including and excluding

these recession years are found to be modest. To reduce the impact of outliers, households in

the top 1% of food consumption are trimmed out of the sample. Three windows consisting

of 6, 8, or 10 years at each side of the cutoff, age 62, are used for estimation, yielding �nal

sample sizes of 6,278, 8,565, and 11,048 observations, respectively.

Figures 3 and 4 show changes in retirement rates and food consumption at 62, based on

a ten-year window at each side of the cutoff. The scatter plots in these �gures show sample

averages by age. Also shown are �tted quadratic regression lines above and below the cutoff

age 62.10 As one can see, the retirement rate has plausibly a small jump and may also have

a small kink (slope change) at 62, whereas the food consumption has a more obvious kink

than a jump at the cutoff. In particular, the age pro�le of food consumption jumps around a

relatively �at line before age 62, but then steeply declines afterwards.11 Since the data appear

to be noisier at younger ages, a speci�cation considered later incorporates variation in within

cell sampling variances. Note that no particular jumps or kinks are present in the retirement

rate at 65.

Based on these �gures, in the following I will estimate the retirement effect at 62 exploiting
10These scatter plots are equivalent to histograms or bin average graphs that are recommended in the standard

RD literature (see, e.g., Imbens and Lemieux 2008 and Lee and Lemieux 2010), since the reported age is in
years.
11Questions regarding food consumption changed somewhat after 1997, and overall the food consumption

data are noisier for early waves of PSID, which may contribute to the observed larger variances at younger ages.
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Figure 3: Retirement rate by age for window [-10, +10]
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Figure 4: Household food consumption by head's age for window [-10, +10]
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either the jump, or the kink, or both for identi�cation. The jump based estimator is given by

equation (16). The estimator using both sources of identi�cation is given by equation (18).

Both estimators can be easily implemented using local 2SLS with either only the jump or both

the jump and the kink as instruments, based on the different windows stated above and with

different weights, corresponding to nonparametric estimation with varying bandwidths and

kernel functions. In particular, according to Corollary 2, the estimator in the last two columns

is valid regardless of whether there is a jump, a kink, or both.

Now consider estimating the kink based estimator given by equation (17), using only the

kink information. In this case as shown by the �gures there might be jumps in the conditional

means of retirement and log food consumption. One way to consistently estimate the purely

kink based estimator is the method described in Section 6, based on separately estimating

local linear or quadratic regressions above and below the threshold and plugging the resulting

consistent estimates of all the slopes into equation (17). Alternatively, one can remove the

possible jumps from the retirement and log food consumption functions by partialling out the

jumps �rst, i.e., regressing log food consumption and retirement on a constant and the crossing

threshold dummy, and then performing 2SLS using the residuals as dependent variables and

the kink as an instrument. More detail will be provided later.

Because the running variable age is discrete, similar to Battistin et al. (2009) and Lemieux

andMilligan (2008), I adopt speci�cations based on age-cell means. In particular, the outcome

model is speci�ed as

YeX D �0 C �1eX C �2eX2 C �3ReX C e; (19)

where eX D X � 62, and represents the distance to the cutoff. YeX is the average logged
food consumption in each age cell and ReX is the empirical probability of retirement, i.e., the
observed fraction of household heads in the cell who are retired. Both are indexed by eX to
emphasize that they are de�ned as sample averages by age. As noted by Lemieux and Milligan
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(2008), the corresponding regression estimates based on micro-data are identical to weighted

estimates of equation (19) if the weight used is the number of observations by age, while

weighting only affects the ef�ciency, but not the consistency of least squares estimation.12

The sample size in each age cell for the ten-year windows below and above the cutoff age

62 (covering 52 to 71) ranges from a minimum of 479 to a maximum of 868 observations.

Table 1 shows the number of observations at each age.

Table 1 Number of observations at each age

eX -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
No. of
observations

868 831 763 725 678 655 609 572 552 578

eX 0 1 2 3 4 5 6 7 8 9
No. of
observations

527 520 530 517 576 538 488 483 489 479

Ideally observations of the running variable would be continuous, not discretized by year

as in Table 1. However, as discussed by Lee and Card (2008), given a discretely observed

running variable, if the deviations of the speci�ed approximating function from the true re-

gression function can be taken to be random speci�cation errors, then the point estimates will

still be consistent, though calculation of standard errors for micro-data regressions would then

need to take into account the clustered nature of these speci�cation errors at the cell level.

They show that under certain conditions, robust standard errors from this cell level regression

are valid.

Corresponding to the food consumption equation (19), retirement is speci�ed as

ReX D 
 0 C 
 1eX C 
 2eX2 C 
 31.eX > 0/C 
 4eX � 1.eX > 0/C u; (20)
12An alternative speci�cation would be to use year speci�c cell means and then include in the model year

dummies. However, since in this case cross-year variations are captured by those dummies, it would be similar
to using averages over all years. A small disadvantage of using year speci�c cell means is having to estimate
year speci�c effects.
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where as before 1.�/ denotes an indicator function that equals one if its argument is true and

zero otherwise. Based on the identi�cation theorems provided earlier, either 
 3 or 
 4 could

be set to zero, depending on whether the source of identi�cation is a jump or a kink. Allowing

both 
 3 and 
 4 to be nonzero permits identi�cation based on either a jump or a kink, or both.

Log food consumption and retirement are speci�ed in equations (19) and (20) as second

order polynomial regressions in eX . Given asymptotically shrinking windows (bandwidths),
these may be interpreted as nonparametric local quadratic regressions, as recommended by

Porter (2003). Although in theory one could include higher order polynomial terms, higher

order terms are asymptotically unnecessary for consistency, and empirically cause numerical

multicollinearity issues, given the relatively small number of age cell means used for estima-

tion here.

For a given degree of polynomial, shrinking the window width generally reduces bias (at

the cost of increasing variance by reducing the effective sample size). So to reduce bias, one

can shrink window width. For example, although Figure 4 based on a ten-year window looks

like a quadratic form might not be a good �t for log food consumption below the cutoff, when

looking at a narrower window, say 8 or 6 years from the cutoff, the scatter plot would be better

�tted by simple quadratics. This is con�rmed empirically below, where quadratic speci�ca-

tions are shown to provide good �t and yield estimates that are robust across speci�cations,

including varying window widths and kernel weights.

Using either only the jump or both the jump and the kink, equation (19) is estimated by

a weighted 2SLS, with the �rst stage given by equation (20), where 
 4 is set to zero for the

former. Using only the kink, 
 3 is set to zero in equation (20), and YeX and ReX in these two
equations are replaced by residualized YeX and ReX , respectively, i.e., residuals from regressions
of YeX and ReX on one and 1.eX > 0/. They are then estimated similarly by a weighted 2SLS.13
13In practice, for the kink based estimator, one may restrict the second derivatives to be the same at each

side of the threshold so that the (residualized) retirement treatment equation does not include an interaction
term between eX2 and 1.eX > 0/. The resulting 2SLS estimator would then correspond directly to the estimator
given by equation (17). Alternatively, one can include this interaction term to allow the second derivatives
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In all the weighted 2SLS, each observation is weighted by 1=.1C jeX j/, so the observation
at the cutoff having eX D 0 is weighted by one, whereas those further away are weighted by
values less than one. This weighting gives the greatest in�uence to observations that are most

informative about the treatment effect, that is, the observations that are closest to the cutoff.

This weighting also makes each stage of the 2SLS equivalent to a local polynomial regression

at the cutoff point, with the weights corresponding to the kernel function.

Besides the above kernel weighting, I also try weighting each observations additionally

by the inverse sample standard deviation of the dependent variable YeX , log food consumption
within each age cell. This weighting scheme takes into account differences in the sampling

variances of log food consumption at different ages, as indicated by Figure 4. This weighting

was used by Lemieux and Milligan (2008) for RD estimation of the disincentive effects of

social assistance. As shown below, the results are not sensitive to the different choices of

weighting.

Table 2 presents the main estimation results. Each estimate in Table 2, when multiplied by

100, equals the estimated average percentage change in food consumption at retirement, when

retirement is caused by reaching the age at which one quali�es for social security bene�ts. The

�rst two columns present jump based estimates. The middle two columns present kink based

estimates as discussed above. The last two columns present estimates using both the jump

and kink for identi�cation. By Corollary 2 and the properties of the 2SLS weights discussed

in Section 4, this estimator is valid regardless whether there is a kink, a jump, or both. For

each of these three estimators, Column (1) uses the inverse distance weighting, and Column

(2) uses both the inverse distance and the inverse sampling standard deviation weighting as

discussed above.
to be different. Either way in existence of kinks, the resulting kink estimator converges to the same limiting
value (analogous to the way either local linear or local quadratic regressions will consistently estimate the same
regression slope). In most cases examined in this paper, the results from including or excluding the interaction
between eX and 1.eX � 0/ are not very different, though including this interaction yields estimates that are slightly
more stable across different windows widths.
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Table 2 Estimated retirement effects on food consumption at age 62-(I)

Jump Kink Both jump and kink
(1) (2) (1) (2) (1) (2)

[-6,+6] -0.191 -0.171 -0.221 -0.226 -0.181 -0.181
(0.089)** (0.086)** (0.045)*** (0.043)*** (0.090)** (0.085)**

[-8,+8] -0.211 -0.198 -0.194 -0.200 -0.226 -0.215
(0.089)** (0.085)** (0.035)*** (0.033)*** (0.087)*** (0.084)***

[-10,+10] -0.206 -0.194 -0.211 -0.216 -0.225 -0.215
(0.080)*** (0.077)** (0.027)*** (0.026)*** (0.077)*** (0.075)***

Note: estimates are based on the 1994 - 2007 PSID data, with data from the recession
years 2001 and 2003 omitted. (1) uses the inverse distance weighting; (2) adds the inverse
sampling standard deviation weighting. Using weight (1), the �rst stage F statistics range
from 35.64 to 12579.95. Using weight (2), the �rst stage F statistics range from 75.45 to
15304.00. For all speci�cations, the instrumental variables are (jointly) signi�cant at the 1%
level in the �rst stage regression of the 2SLS. Robust standard errors are in parentheses; *
signi�cant at the 10% level, ** signi�cant at the 5% level, *** signi�cant at the 1% level.

For all the speci�cations, the �rst stage regression of the 2SLS is highly signi�cant with

instrumental variables that are (jointly) signi�cant at the 1% level. The estimates remain sim-

ilar regardless of whether identi�cation is based on the jump, the kink, or both. For example,

when using a six-year window (covering age 56 to 67) and inverse distance weighting, the

estimated food consumption drops based on the jump, the kink, or both, are 20.6%, 21.1%,

and 21.5%, respectively. Note that Theorem 2 shows that when there is a jump, the kink based

estimator given by equation (17), the ratio of two kinks, is valid only when the derivative of

the treatment effect with respect to the cutoff age 62 is zero, i.e., the treatment effect does not

vary linearly with age. The fact that these three estimators all yield similar results therefore

suggests that this derivative may be zero, as would be the case if the retirement treatment effect

is locally constant.

The results are also robust to different weightings. For example, by the kink based estima-

tor and the inverse distance weighting (marked by (1) in Table 1) the estimated food consump-

tion drops are 21.1%, 19.4%, and 21.1% for the 6, 8, and 10 years windows, respectively, in

contrast to 22.6%, 20.0%, and 21.6% based on the alternative weighting. In all speci�cations,
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estimates based on the two different ways of weighting are within one standard error of each

other. Furthermore, the results are not very sensitive to different window widths. For example,

using only the jump for identi�cation and the inverse distance weighting, the estimated drops

in food consumption for the 6, 8, and 10 years windows are 19.1%, 21.1%, and 20.6%, re-

spectively. Results based on alternative equivalence scales are reasonably close. For example,

when using another commonly used equivalence scale, the OECD equivalence scale or the

Oxford scale, the estimated retirement effects are between 15% and 22% (Appendix B Table

A1).14

Table 3 Estimated retirement effects on food consumption at age 62-(II)

Jump Kink Both jump and kink
(1) (2) (1) (2) (1) (2)

[-6,+6] -0.226 -0.228 -0.226 -0.227 -0.215 -0.219
(0.088)** (0.083)*** (0.036)*** (0.035)*** (0.083)** (0.079)***

[-8,+8] -0.220 -0.241 -0.210 -0.212 -0.239 -0.224
(0.080)*** (0.081)*** (0.027)*** (0.026)*** (0.085)*** (0.076)***

[-10,+10] -0.240 -0.242 -0.211 -0.211 -0.217 -0.222
(0.079)*** (0.076)*** (0.021)*** (0.021)*** (0.079)*** (0.070)***

Note: estimates are based on the 1994 - 2007 PSID data, including data from the recession
years 2001 and 2003. (1) uses the inverse distance weighting, (2) adds the inverse sampling
standard deviation weighting. Using weight (1), the �rst stage F statistics range from 96.89
to 5273.45. Using weight (2), the �rst stage F statistics range from 116.82 to 6094.19. For
all speci�cations, the instrumental variables are (jointly) signi�cant at the 1% level in the
�rst stage regression of the 2SLS. Robust standard errors are in parentheses. * signi�cant at
the 10% level; ** signi�cant at the 5% level;*** signi�cant at the 1% level.

Estimates in this paper are largely consistent with what is documented in the literature.

For example, Ameriks et al. (2007) �nd that a typical U.S. household experiences roughly

a 20% fall in consumption at retirement. Bernheim et al. (2001) estimate an average 10%�

20% downward shift in the consumption pro�le around the time of retirement based on the

1978-1990 PSID. Hurd and Rohwedder (2005) estimate the decline at 15%�20% using data
14The OECD equivalence scale assigns a value of 1 to the �rst household member, of 0.7 to each additional

adult and of 0.5 to each child. The equivalence scale then equals the sum of these values across all household
members.
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from the Health and Retirement Study (HRS) and from a supplemental survey to the HRS, the

Consumption and Activities Mail Survey (CAMS). More recently, using panel data from 1980

to 2000 Consumer Expenditure Survey (CEX), Aguila, Attanasio, and Meghir (2010) �nd that

food expenditure declines at retirement, but not nondurable expenditure.

For another robustness check, I re-estimate the model using all years' data from 1994 to

2007, including those from the recession years 2001 and 2003. The results are presented in

Table 3. The estimated consumption drops are comparable to and are only slightly larger on

average than the estimates reported in Table 2 where the recession year's data are omitted. It

is plausible that food consumption drops more at retirement during recessions than in other

time periods.

Table 4 Estimated retirement effect on food consumption based on micro-data

Sample (I) Sample (II)
(a) (b) (c) (d) (a) (b) (c) (d)

[-6,+6] -0.258 -0.198 -0.273 0.006 -0.253 -0.223 -0.255 -0.010
(0.304) (0.199) (0.297) (0.023) (0.333) (0.195) (0.322) (0.022)

[-8,+8] -0.261 -0.185 -0.282 0.003 -0.249 -0.214 -0.244 -0.011
(0.265) (0.177) (0.246) (0.023) (0.285) (0.173) (0.261) (0.022)

[-10,+10] -0.231 -0.210 -0.251 0.002 -0.233 -0.216 -0.221 -0.012
(0.202) (0.165) (0.209) (0.123) (0.250) (0.061) (0.221) (0.022)

Note: Sample (I) omits years 2001 and 2003 data; Sample (II) includes years 2001 and
2003 data. (a) Jump based 2SLS; (b) Kink based (partialling out jumps) 2SLS; (c) Jump
and kink based 2SLS; (d) OLS. All speci�cations are weighted by the inverse distance
weight. Robust standard errors are in parentheses.

Table 4 reports 2SLS and OLS regression results based on individual household micro-data

instead of cell means, using data either omitting the recession years (Sample (I) in Table 4) and

not omitting (Sample (II)). Since these are not cell mean data, the estimates are weighted only

by the inverse distance weighting, not by within cell standard deviations. The speci�cations

are the same as equations (19) and (20), except that year dummies are added as additional

covariates in these two equations. Note that use of age-cell means averages over, and hence
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smooths out, variation across years, which is analogous to including year dummies in the

micro-data regressions. The difference is that estimating the year speci�c effects tends to

increase the standard errors (see, e.g., Lee and Lemieux, 2010). Not surprisingly, for all three

window widths (6, 8, or 10 years from the cutoff), the point estimates based on the micro-data

2SLS remain reasonably close to the cell-mean based estimates, while the standard errors are

much larger. These increased standard errors cause the estimated retirement effects to become

statistically insigni�cant at conventional signi�cance levels.

Estimates based on OLS are in striking contrast to those by IV 2SLS. OLS yields effects

that are mostly small and insigni�cant and also vary in signs depending on the samples used. In

particular, when using the sample that leaves out recession years, OLS estimates of retirement

effects have implausible positive signs.

To evaluate the plausibility of the RD assumptions, I examine whether the baseline co-

variates have any unusual jumps or kinks at the cutoff. The RD modeling assumption implies

that individuals do not have precise manipulation of the running variable. If this is true, then

there should be no sharp changes at the cutoff age 62 in variables that are determined prior

to the treatment. Otherwise it would cast doubt on the validity of the smoothness assumption

of potential outcomes as speci�ed in assumption A1. I test smoothness of the conditional

means of a battery of baseline covariates, conditional on household head's age. The covariates

tested include household head's gender, white/non-white, Hispanic/non-Hispanic, marital sta-

tus, wife's age, education (in years), and family size. As examples, �gures 7 and 8 show the

average values of wife's age and family size by head's age. One can see that they both change

smoothly with household head's age and there are no unusual jumps or kinks at 62.

Formally, this imprecise manipulation assumption can be tested by the method proposed

by Lee (2008) and Lee and Lemieux (2010). First choose covariates that are known to be un-

affected by retirement but are correlated with food consumption, and then test the null hypoth-

esis of a zero average effect on these pseudo outcomes by conducting parallel RD analyses,
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Figure 5: Wife's age by household head's age

i.e., replacing the dependent variable in the second stage of 2SLS with these covariates and

performing similar 2SLS estimation. The test results are reported in Appendix B Table A2.

For all the covariates listed above, the coef�cients of retirement are not statistically signi�cant

at any conventional levels and hence con�rm the imprecise manipulation assumption.

I next test the smoothness of the density of age at the cutoff, though intuitively it is un-

likely that individuals could manipulate age to qualify for social security retirement bene�ts.

Following the general idea of the density test in McCrary (2008), I estimate a local regression

the same as the retirement equation except that the retirement rate ReX is now replaced by the
fraction of observations at each age. I then test the signi�cance of the estimated coef�cients

of 1.eX > 0/ and eX � 1.eX > 0/ to determine whether there is a signi�cant jump or kink at

the cutoff. This regression is intuitively equivalent to graphing the fraction of each age (or a

histogram) and inspecting if there are jumps or kinks at the cutoff. As shown in Table A2 in

Appendix B, the estimated coef�cients are not statistically signi�cant at any conventional lev-

els, thereby indicating no signi�cant jumps or kinks in the density of age at the cutoff, which

further con�rms the validity of the RD model here.
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Figure 6: Family size by household head's age

8 Conclusions

Regression discontinuity models identify local average treatment effects by associating a dis-

crete change (a jump) in the mean outcome with a corresponding jump in the treatment proba-

bility at a �xed threshold value of the running variable. Lack of discontinuity would make the

standard RD estimator infeasible. However, this paper shows that it is possible to identify the

standard RD model treatment effect under more general conditions, i.e., from a slope change

(a kink) rather than, or in addition to, a jump in the probability of treatment.

Mathematically, the intuition for identi�cation off a kink in the absence of a jump is based

on L'hopital's rule. Behaviorally, in this case individuals just below the kink point and those

just above are comparable except for the different rate of treatment probability changes. This

slope change along with any observed slope change in the mean outcome can be used to

estimate the RD model treatment effect. Note that the RD identi�cation here can not handle

dynamic effects like anticipation effects (e.g., individuals change behaviors in anticipation

of the treatment) or delayed treatment effects (e.g. treatment effects show up gradually with
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time) when the running variable is age or time, but the same is true for standard RD models.

I propose extensions of the usual RD estimator that can be used regardless of whether

the source of identi�cation is a jump or a kink. This is empirically appealing because in

some potential applications of RD models, it is hard to determine whether the probability of

treatment actually jumps or just have a kink at the threshold. In these cases, treatment effects

based on standard RD estimators would either be weakly identi�ed, if the jump is small, or

unidenti�ed if the jump is zero, regardless of how much the slope changes. In contrast, this

paper's estimators make use of any changes in either the intercept or the slope of the treatment

probability at a threshold of the running variable.

The identi�cation results in this paper can be intuitively interpreted using IV models. Just

as the standard fuzzy design RD estimator is numerically equivalent to an IV estimator, I show

that the proposed estimators are numerically equivalent to IV estimators. In particular, a kink

in the treatment probability provides an additional instrument that one can use to identify the

RD treatment effect. It is known that a jump in the treatment probability at the threshold

implies that the binary indicator for crossing the threshold can be used as an instrument. Sim-

ilarly, a kink at the threshold implies that the interaction term between this binary indicator

and the running variable can also be an instrument. So if there is no jump but a kink in the

treatment probability, one would still be able to use this kink at the threshold to identify the

same local average treatment effect as would be identi�ed by a jump, if the jump were to

exist. I also show that in some cases (e.g., when the treatment effect is locally constant in the

neighborhood of the threshold), one can use the information in both the intercept change and

the slope change, i.e., both the jump and a kink, to estimate the RD treatment effect.

All of the proposed estimators can be computed using just the estimated coef�cients from

the same local linear or polynomial regressions that are typically used to estimate standard

RD models, so no new estimation methods are required. As usual, one can alternatively do

IV or 2SLS estimation using observations in the neighborhood of the threshold to obtain not
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only point estimates of the treatment effect but also parametric standard errors, with an added

advantage in this paper's context that 2SLS provides the type of weights that some of the

proposed estimators require.

The identi�cation results are applied to estimate the retirement impact on household food

consumption at the early retirement age 62 using the PSID data in the US. Graphical analyses

show that there might be a jump, a kink, or both in food consumption and retirement prob-

abilities at 62. Estimators based on either a jump, or a kink, or both are performed. I show

that all three yield very similar estimates and that the results are robust to different window

widths and weightings. Food consumption is estimated to drop by about 15% to 23% when

household heads retire. The estimates are largely consistent with what is documented in the

literature.

Given this paper's results, it would be useful to explore identi�cation and estimation of

other treatment related parameters in the presence of kinks instead of jumps, such as the mar-

ginal policy effects of Carneiro, Heckman, and Vytlacil (2010) and Heckman (2010).

9 Appendix A: Proofs

First note that for any x such that c�" � x � cC", given Assumption A1, E .Y .1� D�/ j X D x/

and E .T .1� D�/ j X D x/ are continuously differentiable in the neighborhood of x D c,

since E .Y j X D x; D� D 0/, E .T j X D x; D� D 0/ and E .D� j X D x/ are assumed to

be continuously differentiable. The following proof will use these results.

PROOF of LEMMA 1:

Consider the conditional mean of Y in an RD model for a �xed threshold c,

E .Y j X D x/ D E
�
Y D� C Y

�
1� D�

�
j X D x

�
D E

�
Y j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�
.
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For any x > c, by the de�nition of compliers D� D 1, and continuity of E .Y .1/ j X D x; D� D 1/

and E .Y .1� D�/ j X D x/, one has

gC.c/ D lim
x#c
E .Y j X D x/

D E
�
Y .1/ j X D c; D� D 1

�
E
�
D� j X D c

�
C E

�
Y
�
1� D�

�
j X D c

�
.

Similarly, for any x < c, by the de�nition of compliers D� D 1 and continuity of E .Y .0/ j X D x; D� D 1/

and E .Y .1� D�/ j X D x/, one has

g�.c/ D lim
x"c
E .Y j X D x/

D E
�
Y .0/ j X D c; D� D 1

�
E
�
D� j X D c

�
C E

�
Y
�
1� D�

�
j X D c

�
.

Therefore,

gC.c/� g�.c/ D E
�
Y .1/� Y .0/ j X D c; D� D 1

�
E
�
D� j X D c

�
.

E .Y .1/� Y .0/ j X D c; D� D 1/ is denoted as �.c/, so one has

gC.c/� g�.c/ D �.c/E
�
D� j X D c

�
,

which is equation (1).

Similarly, given T D T D� C T .1� D�/ and the de�nition of compliers, one has

E .T j X D x/ D E
�
T j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
D E

�
T � j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
.

E .T � j X D x; D� D 1/ D 1 for all x � c. Also E .T � j X D x; D� D 1/ D 0 for all

x < c, so it must hold in the limit as x " c. By continuity of E .T .1� D�/ j X D x/
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and E .D� j X D x/, one has

fC.c/� f�.c/ D lim
x#c
E .T j X D x/� lim

x"c
E .T j X D x/

D E
�
D� j X D c

�
,

which is equation (2).

PROOF of THEOREM 1:

For t D 0; 1, de�ne the function G t .x/ by

G t .x/ D E
�
Y .t/ j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�
:

Taking the ordinary derivative of this function gives

G 0t .x/ D
@E .Y .t/ j X D x; D� D 1/ E .D� j X D x/

@x
C
@E .Y .1� D�/ j X D x/

@x
:

This derivative G 0t .x/ exists and is continuous at x D c because E .Y .t/ j X D x; D� D 1/,

E .D� j X D x/, and E .Y .1� D�/ j X D x/ are all continuously differentiable at x D c. It

follows that

G 01 .c/� G
0
0 .c/ D

@E .Y .1/� Y .0/ j X D c; D� D 1/ E .D� j X D c/
@c

D � 0 .c/ E
�
D� j X D c

�
C � .c/

@E .D� j X D c/
@c

:

By the proof of Lemma 1 for x in the neighborhood of c we have g .x/ D G1 .x/ for

x > c, and by continuity of G 0t .x/ we have g0C .c/ D G 01 .c/. In the same way based on x 6 c

we get g0� .c/ D G 00 .c/, and so

g0C .c/� g
0
�.c/ D �

0 .c/ E
�
D� j X D c

�
C � .c/

@E .D� j X D c/
@c

: (21)

45



Similarly, we have

fC .c/ D lim
x#c
E.T j X D x/ D E

�
D� j X D c

�
C E

�
T
�
1� D�

�
j X D c

�
and

f� .c/ D lim
x"c
E.T j X D x/ D E

�
T
�
1� D�

�
j X D c

�
.

Given the continuous differentiability of E .T .1� D�/ j X D x/ and E .D� j X D x/ at the

point x D c, the ordinary derivatives of the right-hand side in the above two equations exist.

So analogous to the above analysis we obtain

f 0C .c/� f 0�.c/ D
@E .D� j X D c/

@c
. (22)

Given equations (21) and (22) and the assumption E .D� j X D c/ D 0, one has

g0C .c/� g
0
� .c/ D � .c/

�
f 0C .c/� f 0�.c/

�
, (23)

and so

� .c/ D
g0C .c/� g0� .c/
f 0C .c/� f 0�.c/

.

Note that the above can be alternatively shown by L'hopital's rule. To see this, let B .x/ D

G1 .x/ � G0 .x/ for all x in the neighborhood of c. Similarly, let p .x/ D E .D� j X D x/.

By Assumption A1, both B .x/ and p .x/ are continuously differentiable.

From the above, one has B .c/ D G1 .c/�G0 .c/ D gC .c/� g� .c/ and p .c/ D fC .c/�

fC .c/, as well as B 0 .c/ D G 01 .c/� G
0
0 .c/ D g

0
C .c/� g0� .c/ and p0 .c/ D f 0C .c/� f 0� .c/.

Lemma 1 shows B .c/ D � .c/ p .c/, so given p .c/ D 0, one has B .c/ D � .c/ p .c/ D 0.
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Then

� .c/ D
limx!c B .x/
limx!c p .x/

D
limx!c B 0 .x/
limx!c p0 .x/

D
B 0.c/
p0.c/

D
g0C .c/� g0� .c/
f 0C .c/� f 0� .c/

,

where the second equality follows from L'hopital's rule, and the third from the continuous

differentiability of B .x/ and p .x/.

PROOF of COROLLARY 1:

If there is a jump, i.e, the identi�ed difference fC.c/ � f�.c/ is nonzero, then �.c/ is

identi�ed by equation (4). Alternatively, if there is no jump ( fC.c/ � f�.c/ D 0), then by

Assumption A2 there must be a kink. So by Theorem 1 �.c/ is identi�ed by equation (5).

PROOF of THEOREM 2:

For convenience, I will continue to use B .c/, p .c/, B 0.c/, and p0.c/ as in the proof of

Theorem 1. If there is no jump, i.e., p.c/ D 0 and hence B.c/ D � .c/ p .c/ D 0, by

Assumption A2, there is a kink. Then Theorem 1 gives

� .c/ D
B 0 .c/
p0 .c/

D
B .c/C wB 0 .c/
p .c/C wp0 .c/

:

Now consider the case where � 0 .c/ D 0. By equations (21) and (22), if � 0 .c/ D 0 then

B 0 .c/ D � .c/ p0 .c/, and in addition it has already been shown that B .c/ D � .c/ p .c/ with

equations (1) and (2). Taking a weighted sum of these two equations gives B .c/CwB 0 .c/ D

� .c/ .p .c/C wp0 .c//. Then

� .c/ D
B .c/C wB 0 .c/
p .c/C wp0 .c/

.

The denominator of this equation is nonzero, since by Assumption A2 either p .c/ or p0 .c/ is
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nonzero.

PROOF of COROLLARY 2:

Suppose �rst that there is a jump, fC .c/� f� .c/ 6D 0, then

lim
n!1

gC .c/� g� .c/C wn
�
g0C .c/� g0� .c/

�
fC .c/� f� .c/C wn

�
f 0C .c/� f 0� .c/

� D gC .c/� g� .c/
fC .c/� f� .c/

D �.c/.

Alternatively, suppose there is no jump, fC .c/� f� .c/ D 0 and gC .c/�g� .c/ D �.c/ . fC .c/� f� .c// D

0, then

gC .c/� g� .c/C wn
�
g0C .c/� g0� .c/

�
fC .c/� f� .c/C wn

�
f 0C .c/� f 0� .c/

� D wn
�
g0C .c/� g0� .c/

�
wn
�
f 0C .c/� f 0� .c/

� D �.c/;
where the last equality follows from Theorem 1. Since this equality holds for all n, it must

hold in the limit as n!1.

PROOF of THEOREM 3:

Use the notation in the proof of Theorem 1, and for simplicity replace B.c/ and p.c/ with

B and p, respectively. From Lemma 1,

B D � .c/ p:

Twice differentiability gives

B 0 D � 0 .c/ p C � .c/ p0; (24)

B 00 D � 00 .c/ p C 2�.c/0 p0 C �.c/p00: (25)

Recall by notation in the text B 0 D C , p0 D q, B 00 D D, and p00 D r . If there is no jump,

p D 0. By Assumption A2, there is a kink, so p0 D q 6D 0. From Theorem 1, one has
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� .c/ D
B 0

p0
D
C
q
D
B C w .2qC � Dp/
p C w

�
2q2 � rp

�
for any w 6D �p=

�
2q2 � rp

�
. The last equality follows from p D 0 and hence B D � .c/ p D

0.

If � 00 .c/ D 0, then solving for � .c/ from equations (24) and (25) gives

� .c/ D
2qC � Dp
2q2 � rp

.

Also if there is a jump, the standard RD estimator applies, � .c/ D B
p . By the rule of

fraction, one has

� .c/ D
B C w .2qC � Dp/
p C w

�
2q2 � rp

�
for any w 6D �p=

�
2q2 � rp

�
.

The same procedure can be applied to cases where the d-th derivative � .d/ .c/ D 0 for any

�nite positive integer d. Keep taking derivatives on both sides of B D � .c/ p, until the d-th

derivative. With the system of d equations and � .d/ .c/ D 0, one can back out � .c/, as the

system of equations are recursive in nature.

PROOF of COROLLARY 3:

Similar to Corollary 2, suppose �rst that there is a jump, p 6D 0, then

lim
n!1

B C !n .2qC � Dp/
p C !n

�
2q2 � rp

� D
B
p
D �.c/.

Alternatively, suppose there is no jump, p D 0, and hence B D �.c/p D 0, so

B C !n .2qC � Dp/
p C !n

�
2q2 � rp

� D
!n .2qC � Dp/
!n
�
2q2 � rp

� D C
q
D �.c/,
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where the last equality follows from Theorem 1. It holds for all n, so it holds in the limit as

n!1.
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10 Appendix B: Tables

Table A1 Estimated retirement effects on food consumption at age 62 - (III)
Jump Kink Both jump and kink
(1) (2) (1) (2) (1) (2)

[-6,+6] -0.186 -0.176 -0.175 -0.180 -0.193 -0.184
(0.097)* (0.093)* (0.048)*** (0.046)*** (0.096)** (0.091)**

[-8,+8] -0.212 -0.200 -0.150 -0.155 -0.223 -0.212
(0.095)** (0.091)** (0.037)*** (0.036)*** (0.092)** (0.088)**

[-10,+10] -0.205 -0.194 -0.166 -0.170 -0.219 -0.210
(0.085)** (0.082)** (0.029)*** (0.028)*** (0.081)*** (0.079)***

Note: estimates are based on the 1994 - 2007 PSID data, not including the recession years
2001 and 2003. Food consumption is scaled by an alternative OECD equivalence scale. (1)
uses the inverse distance weighting; (2) uses both the inverse distance and inverse sampling
standard deviation weighting. Using weight (1), the �rst stage F statistics range from 63.44
to 12579.95. Using weight (2), the �rst stage F statistics range from 74.03 to 15122.38. For
all speci�cations, the instrumental variables are (jointly) signi�cant at 1% level in the �rst
stage regression of the 2SLS. Robust standard errors are in the parentheses. * signi�cant at
the 10% level; ** signi�cant at the 5% level; *** signi�cant at the 1% level.

Table A2 The smoothness of conditional means of covariates and density of age

Retirement effects on base-line covariate:
Male 0.089 (0.066)
White -0.060 (0.058)
Married 0.112 (0.069)
Wife's age 1.197 (1.000)
Hispanic -0.031 (0.037)
Education 1.041(0.705)
Family size -0.014 (0.061)

Density of household head's age:
Jump -0.000 (0.002)
Kink 0.001 (0.001)
Note: Robust standard errors are in the parentheses; All the estimates
are not statistically signi�cant at the conventional signi�cance levels;
Estimation is based on a 10 years window with the inverse density
weighting and inverse sampling standard deviation weighting.
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