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Abstract

Many empirical applications of regression discontinuity (RD) models use a running vari-

able that is rounded and hence is discrete, e.g., age in years, or birth weight in ounces. This

paper shows that standard RD estimation using a rounded discrete running variable leads to

inconsistent estimates of treatment effects, even when the true functional form relating the

outcome and the running variable is known and is correctly speci�ed. This paper provides

simple formulas to correct for this discretization bias. The proposed approach does not require

instrumental variables, but instead uses information regarding the distribution of rounding er-

rors, which is easily obtained and often close to uniform. The proposed approach is applied

to estimate the effect of Medicare on insurance coverage in the US, and to investigate the

retirement-consumption puzzle in China, utilizing the Chinese mandatory retirement policy.
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1 Introduction

Regression discontinuity (RD) models identify local average treatment effects in cases where a treatment

is determined by whether a continuous running variable X� crosses a �xed threshold c. The RD treatment

effect is given by the difference in the mean outcome of interest just above and just below the threshold.

It can be obtained by separately estimating regressions of the outcome Y on X� above and below the

threshold point, and differencing the �tted value of these two regressions at the threshold (this can be

equivalently done using a single regression that includes a dummy variable indicating whether X� exceeds

the threshold).

Many empirical applications of regression discontinuity (RD) methods use a running variable that is

rounded and hence involves rounding or discretization errors. Examples include applications based on age

in years, birth weight in ounces, an integer valued test score, calendar year or quarter etc. Age in years,

calendar year, or similarly quarter involves rounding down to the nearest integer, whereas birth weight

in ounces or an integer test score involves ordinary rounding, i.e., the true birth weight or test score is

rounded either up or down to the nearest integer. Rounding issues exist frequently due to data availability.

For example, many survey data sets only report an individual's age in years at the time of the survey. So

in this case the reported age is an individual's actual age rounded down to the nearest integer.

As noted by Card and Lee (2008), when the observed running variable X is rounded and hence is dis-

crete, it is impossible to compare outcomes for observations �just above� and �just below� the treatment

threshold, and requires researchers to choose a functional form for the relationship between the treatment

variable and the outcome of interest. Essentially, the RD treatment effect is not nonparametrically iden-

ti�ed in this case. Standard practice is therefore to estimate parametric regressions of Y on reported age

X (generally low order polynomial models; see, e.g., Card and Shore-Sheppard, 2004, DiNardo and Lee,

2004, Kane, 2003, and Lee, 2008) above and below the RD treatment threshold.

In this paper I use age in years as a leading motivating example and focus on the case of rounding

down. I then extend the results to other typical forms of rounding. I �rst show that the standard method for

dealing with a rounded discrete running variable leads to inconsistent estimates of the RD treatment effect,

even if the true functional form relating the outcome to the running variable is known and is correctly

speci�ed. This inconsistency exists for the same reason that measurement errors in regressors yield biased

and inconsistent estimates of regression coef�cients, even when the functional form of the regression is

correctly speci�ed. In this case the observed rounded running variable can be taken as a mismeasure of

the true exact running variable.
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I next provide a formula for the size of the bias in the standard RD model estimators that use a rounded

running variable based on rounding down, and describe the restrictive conditions under which this bias

will be zero. For example, a suf�cient condition for the rounding or discretization bias to be zero is that

the slope and higher derivatives of the outcome as a function of age do not change at either side of the

cutoff. Roughly, the more the slope and higher derivatives change at the cutoff, the greater will be the size

of the bias due to rounding. The bias can be either positive or negative, depending on how the slope and

higher derivatives change at the threshold.

I also show how to correct this rounding bias and thereby obtains consistent estimates of the true RD

treatment effect. These corrections are very simple to implement in practice, and it is also simple to obtain

standard errors for the bias corrected estimator of the treatment effect. These bias formulas and resulting

corrections are not the same as the corrections for standard measurement error models.

When the running variable is only observed at discrete points, like age in years, what appears to be

a discontinuity might actually only be a kink, i.e., a change in slope. For example, estimates based on

rounded data may suggest a signi�cant positive or negative treatment effect when the true treatment effect

is zero. The reverse can also occur, that is, the true treatment effect could be large and signi�cant while

the estimate based on rounded discrete data is small and insigni�cant. The t statistic on the bias corrected

estimator provides a valid test for the presence of a true discontinuity, and hence a nonzero true treatment

effect.

A convenient feature of the proposed bias correction is that it does not require an instrument. It

instead assumes that one has some information regarding the distribution of the rounding error within the

discretized variable cell. In the case of age in years, it means that one can obtain the distribution of ages

within a year, i.e., the distribution of birthdays for the underlying population the data are drawn from,

which is readily available from census data. Alternatively, in most applications this distribution can be

well approximated by a uniform distribution.

Two empirical applications of these results are provided. The �rst looks at the effect of Medicare

eligibility on medical insurance coverage in the US. For this application, higher frequency (monthly versus

yearly) age data are available. Estimates based on these monthly age data provide a benchmark. I show

that the proposed methodology works well and produces estimates that are consistent with having and

using data where age is more accurately measured. In particular, both the benchmark estimates and the

bias corrected estimates imply that rounding leads to an overestimate of the impact of Medicare eligibility

on the medical insurance coverage rate. The bias corrected estimates are similar to those estimates using

monthly age data and departure further away from the uncorrected estimates based on age in years.
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The second investigates the retirement-consumption puzzle in China. The puzzle (see, e.g., Banks,

Blundell, & Tanner, 1998) refers to the empirical �nding that, in many data sets of the developed Western

countries, consumption (typically food consumption) drops signi�cantly at retirement, which is inconsis-

tent with consumption smoothing by the standard life cycle model. In China the of�cial retirement age

for male workers is 60. This mandatory retirement rule yields a signi�cant jump in the retirement rate

at age 60, which helps cleanly identify the impact of retirement on various outcomes of interest. In this

paper, I focus on food consumption to investigate whether a similar retirement-consumption puzzle holds

in China.

Since age is recorded in years in the available Chinese dataset, accurately estimating the retirement

impact using RD models requires correcting for the rounding bias. I show that the slope of the food

consumption pro�le changes substantially at the threshold age 60, resulting in a relatively large rounding

bias. Ignoring this rounding bias produces overestimates of the impact of retirement on food consumption.

I �nd that there is a signi�cant drop in food consumption at retirement among male household heads, but

the drop is not as large as one would calculate from a standard RD analysis that ignores the rounding

bias. Overall, the empirical results in China are consistent with evidence from many developed Western

countries.

I extend these results based on rounding down to cases involving non-integer cutoffs or other typical

forms of rounding, such as ordinary rounding or rounding up to the nearest integer .

The rest of the paper proceeds as follows. Section 2 brie�y reviews the literature. Section 3 provides

the main identi�cation result for the sharp design RD based on rounded and hence discrete data, as well

as a numerically simple correction to the standard discrete data RD estimation. Section 4 describes how

to estimate the true RD treatment effect with rounded data. Section 5 extends the approach to fuzzy

design RD models. Sections 6 and 7 present two empirical applications. Sections 8 and 9 discuss some

extensions to the basic setup. Short concluding remarks are provided in Section 10. Proof of the main

result is provided in the Appendix.

2 Literature Review

RD methods have been widely used in the treatment effect program evaluation literature in recent years.

Recent surveys include Imbens and Lemieux (2008), and Lee and Lemieux (2010). This paper discusses

dealing with rounding or discretization errors in RD running variables. I cast the discussion mostly in the

context of RD applications based on age. Age is commonly used as a running variable in RD applica-
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tions. Examples include Behaghel, Crepon, and Sedillot (2008), Card, Dobkin, and Maestas (2008), Card,

Dobkin, and Maestas (2009), Carpenter and Dobkin (2009), Chen and van der Klaauw (2008), De Giorgi

(2005), Edmonds (2004), Edmonds, Mammen, and Miller (2005), Ferreira (2007), Lalive, Van Ours, and

Zweimller (2006), Lalive (2007), Lalive (2008), Lee and McCrary (2005), Lemieux and Milligan (2008),

and Leuven and Oosterbeek (2004). This paper's main results may also be similarly applied to RD appli-

cations with calender years as a running variable. For example, Oreopoulos (2006) uses birth year as a

running variable to estimate returns to education in the UK. In addition, the proposed approach is readily

extended to RD applications invloving other types of rounding errors.

One paper that speci�cally considers discreteness of an RD running variable is Lee and Card (2008).

They model deviations of the true regression function from a given approximating function, i.e., the cho-

sen parametric (e.g., polynomial) function for the discrete running variable, as random speci�cation er-

rors. They then discuss the impact of these random speci�cation errors on inference. In particular, they

recommend use of cluster-consistent standard errors instead of conventional heteroskedasticity-consistent

standard errors. They also give an additional correction that is needed when the speci�cation errors for

regression functions above and below the cutoff are not assumed to be identical.

As noted by Lee and Card (2008), when the random speci�cation errors are not identical for the

regressions above and below the cutoff, the true parameter of interest, i.e., the true RD treatment effect

is not the same as the simple difference of the expected values of these two regressions at the cutoff. In

particular, the true treatment effect equals the latter plus the expected difference between the two random

speci�cation errors at the cutoff.

If one interprets their speci�cation errors as rounding errors due to discretization of the running vari-

able, then it can be shown that the expected difference between these two rounding errors is not necessarily

zero. In this paper, I show that under general conditions, this bias term can be identi�ed and estimated,

using information on the distribution of the rounding error within the discretized cell, e.g., the distribution

of age (birthdays) within a year. One can then use this estimated bias to �x the naive RD estimator based

on discretized age, that is, one can �x the bias in the simple difference of �tted values of the discrete data

regressions above and below the cutoff evaluated at the cutoff.

The biases associated with rounding, or more generally the use of interval data, have been examined in

the context of standard regression models. See, e.g., Manski and Tamer (2002) and references therein. In

the regression context, this has traditionally been dealt with by setting observations equal to the midpoint

of the interval, and assuming instruments are available that correlate with the underlying continuously

distributed variable while being uncorrelated with the rounding error. In this way rounding is handled
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in the same way as other measurement error. Alternatively, discretization or rounding leads to a loss of

identi�cation, and only bounds on model parameters are obtained as in Manski and Tamer (2002).

Other papers that consider treatment effect estimation in the presence of measurement errors in either

covariates or indicators of treatment include Cochran and Rubin (1973), Mahajan (2006), Lewbel (2007),

Hu (2008), Molinari (2008), Babanezhad et al. (2010), Hu and Lewbel (2010), Battistin and Sianesi

(2011), and Battistin and Chesher (2011). None of these speci�cally handle rounding bias in RD models.

3 Identi�cation

Begin with the standard RD set up. I consider sharp design RD �rst, and later provide the straightforward

extension to fuzzy designs. Let T be the indicator of treatment, so an individual has T D 1 if treated

and T D 0 otherwise. Let c denote the cut-off or threshold age for treatment, which is assumed to be an

integer. Let X� be an individual's exact age at the time of the survey minus c. Age X� is the underlying

continuous running or forcing variable.

Follow Rubin (1974) to let Y .1/ and Y .0/ denote an individual's potential outcomes of interest

from being treated or not, respectively. The observed outcome Y can then be written as Y D Y .0/ C

[Y .1/� Y .0/] T . An individual's potential outcome can depend on X�. De�ne conditional means of the

potential outcomes conditioning on the true age as gt .X�/ D E .Y .t/ j X�/ for t D 0; 1. The conditional

mean of the observed outcome is then E .Y j X�; T / D g0 .X�/C
�
g1 .X�/� g0 .X�/

�
T .

De�ne the dummy indicating crossing the threshold as T � D I .X� � 0/, where I .�/ is the indicator

function that equals one if its argument is true and zero otherwise. Sharp design RD means that T D T �,

so for now, an individual is assumed to be treated if and only if X� � 0, that is, when his true age equals

or exceeds the cutoff c. It follows that when X� � 0, E .Y j X�/ D E .Y j X�; T � D 1/ D g1 .X�/ and

when X� < 0, E .Y j X�/ D E .Y j X�; T � D 0/ D g0 .X�/. By assuming continuity of g0 .X�/ and

g1 .X�/ at the threshold point X� D 0, the standard sharp design RD local average treatment effect is

given by � D g1 .0/� g0 .0/. Outcomes could also depend on other covariates, which are suppressed for

now. All the statements and theorems in this paper can be assumed to hold conditioning on the values of

other covariates, though it should be noted that a generic virtue of the RD approach is that inclusion of

other covariates generally only affects ef�ciency but not consistency of estimated RD treatment effects.1

1Given that T D T � is a deterministic function of X�, even though Y may depend on other observed covariates, if

E .Y j X�; T D t/ D gt .X�/ for t D 0; 1 are nonparametric regression functions or correctly speci�ed parametric condi-

tional mean functions conditioning on X� only, then E .Y j X�/ D E .Y j X�; T / D g0 .X�/ C
�
g1 .X�/� g0 .X�/

�
T will
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Let bg1 .X�/ be a consistent estimator of g1 .X�/ for X� � 0, obtained by regressing Y on X� either
nonparametrically, or by a correctly speci�ed parametric model, using observations of data having X� � 0.

Similarly let bg0 .X�/ be a consistent estimator of g0 .X�/ for X� < 0. The sharp design RD treatment

effect � is consistently estimated byb� D bg1 .0/�bg0 .0/.
Now suppose one does not observe continuous X�. Instead one observes X , de�ned as the largest

integer less than or equal to X�. That is, X is X� rounded down and is an individual's reported age minus

c at the time of the survey. This X is what is usually available in survey datasets, since surveys typically

report individuals' age in (integer) years up to their most recent birthday at the time of the survey. The

same analysis can be applied for �ner or coarser reporting of age, e.g., if age is recorded in months, then

the same analysis can apply by taking the units of X and X� as measured by month rather than by year.

Suppose one were to ignore the fact that the reported data are rounded, and attempted to construct

the standard RD estimatorb� as described above, but using the rounded discrete data X . Refer to this as
the naive discrete data RD treatment effect estimator and denote it b� 0, of which the probability limit is
denoted as � 0. Call � 0 as the naive discrete data RD treatment effect. If � 0 D � , then the naive discrete data

estimatorb� 0 is a consistent estimator of the true RD treatment effect, otherwise if � 0 6D � then the discrete
data RD treatment effect � 0 does not equal the true RD treatment effect, and sob� 0 will be an inconsistent
estimator of � . De�ne the bias in the discrete data RD treatment effect as � 0 � � .

Let ht .X/ be the discrete data analog of gt .X�/ for t D 0; 1, so h1 .X/ D E .Y j X; T � D 1/

when X � 0 and that h0 .X/ D E .Y j X; T � D 0/ when X < 0. By construction, E .Y j X; T / D

E .Y j X; T �/ D h0 .X/ C [h1 .X/� h0 .X/] T �. Let bh1 .X/ be a consistent estimator of h1 .X/ for
X � 0, obtained by regressing Y on X in a correctly speci�ed parametric model using observations of

data having X � 0. Similarly let bh0 .X/ be a consistent estimator of h0 .X/ for X < 0, obtained by

regressing Y on X in a correctly speci�ed parametric model using observations of data having X < 0.

Access to only rounded age data will make local nonparametric estimation in the neighborhood of the

threshold impossible, because one does not observe data anywhere in the neighborhood of zero except

at zero itself. It will therefore be necessary to assume parametric models for g1 .X�/ and g0 .X�/. I will

follow the usual practice in the literature of specifying these models as polynomials with possibly unknown

but �nite degrees. Given the parametric model for the true continuous age, I then derive the corresponding

estimation equations for the rounded age. In particular it will follow from the assumptions below (as

proven in Corollary 1) that the correct speci�cations for h0 .X/ and h1 .X/will also be polynomials. When

be the correct conditional mean function and hence � D g1 .0/ � g0 .0/ will correctly identify the RD local average treatment

effect at the cutoff.
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estimating the model, standard covariate selection tests can be employed to determine the degree of these

polynomials. I assume polynomials because they are commonly used in empirical practice, and because

any suf�ciently smooth (i.e., analytic) function can be approximated arbitrarily well by a polynomial.

The goal now is to provide assumptions that will allow one to identify and consistently estimate the

true RD local treatment effect � using what one can identify from rounded data. Equivalently, these

assumptions will permit one to quantify and correct for the bias in the discrete data RD treatment effect

� 0.

Let e D X�� X , so e is the measurement error in the reported rounded age, and has 0 � e < 1. De�ne

�k D E
�
ek
�
. The following lists the identifying assumptions.

ASSUMPTIONS

A1: T D I .X� � 0/.

A2: g0 .X�/ and g1 .X�/ are continuous at X� D 0.

A3: The conditional mean functions g0 .X�/ for X� < 0 and g1 .X�/ for X� � 0 are polynomials of

possibly unknown degree J .

A4: h0 .X/ is identi�ed for all � .J C 1/ � X < 0, and h1 .X/ is identi�ed for all 0 � X � J .

A5: I .X � 0/ D I .X� � 0/.

A6: For all integers k � J , E
�
ek j X

�
D �k where e D X� � X , and these moments are identi�ed.

Assumption A1 is the standard sharp design RD identifying assumption that treatment occurs if and

only if age exceeds the threshold c, and hence when X� crosses zero. Assumption A2 is the standard

identifying assumption of RD design that the conditional means of the potential outcomes are continuous

at X� D 0, so the discontinuity in the observed conditional mean of Y at the threshold is attributable to the

treatment.

Assumption A3 is a functional form restriction. As noted previously, unlike the standard RD, local

nonparametric estimation is not possible with rounded discrete data, so estimation requires some assumed

functional form. I choose polynomials because they are the most commonly used functional forms in

empirical applications of RD with rounded data, and because any suf�ciently smooth function can be

approximated arbitrarily well by a polynomial. Note that Assumption A3 is an assumption only about

observables, not counterfactuals, and so could be tested (using, e.g., a validation sample where true age

X� is reported). Assumption A3 can be easily extended to allow g0 .X�/ and g1 .X�/ to be polynomials

of different degrees. Here for simplicity, I assume that they both are polynomials of J th degree. One can

take J to be the maximum of the degree of these two polynomials.
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Assumptions A4, A5 and A6 are the only assumptions that are imposed on the observed age X (as

opposed to the true age X�). Assumption A4 says that one can identify the mean of Y in each observed

age cell of X . So, for example, h1 .X/ is just the mean of Y across everyone with reported age X above

the threshold, that is, the mean outcome of everyone who's real age is between X and X C 1. If g0 .X�/

and g1 .X�/ are polynomials of different degrees J0 and J1, then obviously h0 .X/ and h1 .X/ only need

to be identi�ed for � .J0 C 1/ � X < 0 and for 0 � X � J1, respectively. In practice, they would be

estimated simply by averaging Y across everyone with reported age X . There are always minimum and

maximum ages at which suf�cient numbers of people can be observed, which puts a limit on the degree J

of the polynomials that could be identi�ed in practice.

Assumption A5 says that the crossing threshold indicator T �, when de�ned in terms of X rather than

X� is not mismeasured. This holds automatically for the type of rounding considered here, where the

observed age is the true age rounded down to the nearest integer and the cutoff c is also an integer.

Assumption A6 says that the moments of the rounding error e do not depend upon X , and that these

moments are identi�ed. These are essentially moments of the distribution of birthdays within a year

(among individuals in the survey population), so A6 will hold if birthdays are uniformly distributed. In

this case �k D
R 1
0 e

kde D 1= .k C 1/ is known. Note that regardless of the distribution of e, all moments

�k are �nite, because e is bounded between zero and one by construction.

There exists evidence of small but statistically signi�cant seasonal departures from uniformity in the

distribution of births within a year. See, e.g., Beresford (1980) or Murphy (1996). However, this seasonal

variation appears to have very little impact on the lower order moments �k . For example, Murphy (1996)

provides birthdays of 480,040 life insurance applicants. The �rst four empirical moments �1 to �4 in his

data are 0.506, 0.339, 0.254, and 0.203, which are numerically quite close the corresponding moments of

a true uniform distribution, 0.500, 0.333, 0.250, and 0.200.

Small departures from uniformity could also arise among very old populations, where those with

birthdays earlier in the year may be slightly underrepresented due to the higher mortality risk. However,

even without assuming a uniform distribution, these distributions may be estimated using data from other

sources such as a census, so it is not restrictive to assume that moments from these distributions are

identi�ed.

Recall that � D g1 .0/� g0 .0/ is the true local RD treatment effect.

THEOREM 1. Let assumptions A1 to A6 hold. Then � is identi�ed even if X� is not observed.

Theorem 1 says that the above assumptions are suf�cient to identify the true local RD treatment effect
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� . The only data these assumptions require are age cell means E .Y j X D x/ and moments �k D E
�
ek
�
.

Given just these data one can consistently estimate � .

Corollary 1 below describes the bias in the discrete data RD treatment effect � 0, and provides a general

method for constructing a consistent estimator for � using rounded age based on Theorem 1. The next

section provides an example, showing that this method is very simple to apply in practice.

Write the true data model as Y � D E .Y j X�; T /C"� D g0 .X�/C
�
g1 .X�/� g0 .X�/

�
T C"�, where

"� D Y � � E .Y j X�; T /. Given Assumptions A1 and A3, this model reduces to

Y D
XJ

jD0 a j X
� j C

XJ
jD0 b j X

� jT � C "� (1)

where g0 .X�/ D
PJ

jD0 a j X� j and g1 .X�/ � g0 .X�/ D
PJ

jD0 b j X� j . Let A be the vector of unknown

coef�cients a0; a1; :::; aJ , and let B be the vector of unknown coef�cients b0; b1; :::; bJ . The true treatment

effect at X� D 0 is then � D b0, which is the �rst element of B or the coef�cient of T � in equation (1),

or the difference at the threshold of the intercepts of g1 .X�/ and g0 .X�/. The second element of B (the

coef�cient b1), is the difference in slopes of g1 .X�/ and g0 .X�/ at the threshold X� D 0, and similarly

the other elements of B equal the differences in higher order derivatives.

It is shown in Corollary 1 below that the rounded data model Y D E .Y j X; T / C " D h0 .X/ C

[h1 .X/� h0 .X/] T C "; with " D Y � E .Y j X; T /, has the same functional form as equation (1) but

with different coef�cients, so

Y D
XJ

jD0 d j X
j C c j X jT � C ". (2)

Let D be the vector of coef�cients d0; d1; :::; dJ of h0 .X/ D
PJ

jD0 d j X j and C be the vector of coef-

�cients c0; c1; :::; cJ of h1 .X/ � h0 .X/ D
PJ

jD0 c j X j . Equation (2) is the regression model that can

be estimated with the available rounded age data, and the naive discrete data RD treatment effect is then

given by � 0 D c0. Given equation (2), the identi�cation and estimation problem is to recover b0, and more

generally all the coef�cients A and B in equation (1), from the coef�cients D and C in (2).

Let
� j
k
�
denote the binomial coef�cient j

k. j�k/ . De�ne the upper triangular J C 1 by J C 1 matrix M as

having the element
� j
k
�
� j�k in row kC1 and column j C1 for all j; k satisfying J � j � k � 0, recalling

that �k D E
�
ek
�
. All elements of M below the diagonal are zero. The proof of Theorem 1 shows that M

is nonsingular.

COROLLARY 1: Let assumptions A1 to A6 hold. Then:

(i) Equation (2) holds, with D identi�ed as the vector of coef�cients of the polynomial h0 .x/ that goes

through the points x D �1;�2; :::;�J;� .J C 1/, and C is identi�ed by C D C1 � D where C1 is the

vector of coef�cients of the polynomial h1 .x/ that goes through the points x D 0; 1; :::; J .
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(ii) the coef�cients in the true underlying model A and B are identi�ed by A D M�1D and B D M�1C .

(iii) the true treatment effect is � D b0, the naive discrete data treatment effect is � 0 D c0, and the bias is

� 0 � � D
PJ

jD1 b j� j .

Corollary 1 shows that the rounded data model is itself a polynomial, and that the matrix M connects

the polynomial coef�cients D and C in the rounded data model h0 .X/ and h1 .X/ to the coef�cients A

and B in the true model g0 .X�/ and g1 .X�/ by MA D D and MB D C .

To illustrate the potential size of the rounding bias, and hence the size of the proposed correction,

consider the case where the e distribution is uniform so �k D 1= .k C 1/. It then follows immediately

from Corollary 1 that the bias in the discrete data estimator � 0 is

� 0 � � D
1
2
b1 C

1
3
b2 C :::C

1
J C 1

bJ :

As noted earlier, the coef�cient b1 is the change in the slope of the conditional mean of the outcome

E .Y j X�/ at the threshold. Similarly, b j for j D 2; 3; :::; J is the change in the j th derivatives of

E .Y j X�/ at the threshold.

This bias formula shows that if the slope and higher derivatives of the outcome as a function of age

do not change at the threshold, meaning that the treatment effect is locally constant, then the bias from

rounding will be zero. Otherwise, the larger the changes in slope and higher derivatives are at the threshold,

the larger the rounding bias tends to be. Note that the rounding bias can result in either an over- or an under-

estimate of the true RD treatment effect, depending on the changes in the polynomial coef�cients crossing

the threshold.

In particular, what appears to be a discontinuity in the rounded discrete data may not exist with con-

tinuous data. That is, the naive discrete data estimatorb� 0 D bc0 can be signi�cantly different from zero,
while the true treatment effect is � D b0 is zero. Alternatively, the discrete data treatment effect estimatorb� 0 D bc0 could be small even when the true treatment effect � D b0 is substantial. The next section de-

scribes how to estimate the true treatment effect from rounded discrete data, and test the signi�cance of a

true discontinuity.

The analysis in this section assumes that the threshold c is an integer, which means that by observing

X instead of X� one can still determine T �, whether one is above or below the threshold without error.

In particular, X is nonnegative if and only if X� is nonnegative, so T � D I .X� � 0/ D I .X � 0/. For

example, in Card, Dobkin, and Maestas (2008) the treatment threshold is de�ned to be age 65 (the age of

near universal Medicare eligibility), so their data correctly sorts individuals into those who are above 65
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and hence are eligible for Medicare from those who are not, even though they only observe age in years.

Note that when the threshold is not an integer, I .X� � 0/ D I .X � 0/ may not hold. Cases like this are

discussed in the extension Section 8.

These results can be extended immediately to applications involving other types of discretization or

rounding, as long as they maintain this property of no mismeasurement in the crossing threshold indica-

tor. Extensions to rounding involving mismeasurement of the crossing threshold status at the cutoff, i.e.,

I .X� � 0/ 6D I .X � 0/ are discussed in the extension Section 8.

4 Estimation

This section describes how to apply Theorem 1 and Corollary 1 to estimate the true treatment effect � with

rounded data of the running variable. For simplicity, I �rst present the estimator for the case where the

polynomial regressions are fourth (or lower) order polynomials, which should cover most actual empirical

applications. I then describe the general estimation method for polynomials of any degree.

Let Yi be the observed outcome for an individual i , and let X i be i's reported age in years subtracting

off the threshold age c. Let Ti D T �i D 1 for any individual who has X i � 0, otherwise Ti D T �i D 0.

Then the �rst step is to estimate the following polynomial model

Yi D d0 C d1X i C d2X2i C d3X
3
i C d4X

4
i C .c0 C c1X i C c2X

2
i C c3X

3
i C c4X

4
i /T

�
i C "i . (3)

Equation (3) is essentially equation (2) with J D 4. Assuming all the assumptions hold conditioning on

covariates, one can add other covariates to the model if desired.

The naive discrete data treatment effect � 0 will just be c0 in this regression. However, as shown below

by applying Theorem 1 and Corollary 1, if the distribution of ages within a year (for individuals in the

population from which the data are drawn) is uniform, then the correct treatment effect is given by

� D c0 �
1
2
c1 C

1
6
c2 �

1
30
c4. (4)

More generally, the true treatment effect is

� D c0��1c1C
�
2�21 � �2

�
c2C

�
�6�31 C 6�2�1 � �3

�
c3C

�
24�41 � 36�

2
1�2 C 8�3�1 C 6�

2
2 � �4

�
c4

(5)

where � j D E
�
e j
�
for j D 1; :::; 4, and the distribution of e is the distribution of ages within a year, on a

scale of zero to one, where zero means a birth at the beginning of the �rst day of the year, and one means
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a birth at the end of the last day. For lower order polynomial models these same formulas can be used, by

just setting the higher order coef�cients equal to zero.

Equation (4) or more generally (5) can be used to test for the presence of rounding bias, by applying

an ordinary Wald t-test to the hypothesis that � � c0 D 0. For example, when e D X� � X has a uniform

distribution and the polynomial is degree J � 4, by equation (4) one would just need to test if the linear

combination of regression coef�cients �c1=2 C c2=6 � c4=30 equals zero. A suf�cient condition for no

rounding bias when the polynomial J � 4 is that c1, c2, and c4 equal zero, so even if we did not know

moments of the distribution of e, one could still do a standard F test of the joint hypothesis that these three

regression coef�cients equal zero.

More generally, for higher order polynomials, based on equation (2) one may estimate the regression

Yi D
XJ

jD0 d j X
j
i C

XJ
jD0 c j X

j
i T

�
i C "i

by ordinary least squares. Then let C be the vector of coef�cients c0; c1; :::; cJ . Next construct the matrix

M as the upper triangular J C 1 by J C 1 matrix having the element
� j
k
�
� j�k in row k C 1 and column

j C 1 for all j; k satisfying 0 � k � j � J , and having all elements below the diagonal be zero. For the

special case in which e is uniformly distributed on the range zero to one, the element of M in row k C 1

and column j C 1 for all j; k satisfying 0 � k � j � J will be�
j
k

�
� j�k D

�
j
k

�
1

j � k C 1
D

j
k . j � k C 1/

while all other elements of M (those below the diagonal) are zero.

Recall that the regression of the outcome Yi on the underlying continuous running variable X�i can be

written as

Yi D g0
�
X�i
�
C
�
g1
�
X�i
�
� g0

�
X�i
��
T �i C "

�
i D

XJ
kD0 akX

�k
i C

XJ
jD0 bkX

�k
i T

�
i C "

�
i ;

where the true treatment effect is given by � D g1 .0/ � g0 .0/ D b0. Although one cannot estimate this

regression, by Corollary 1, B D M�1C , and so the estimate of � is given by the �rst element of M�1C .

For example, if J D 4 then B D M�1C has the form0BBBBBBBBB@

b0

b1

b2

b3

b4

1CCCCCCCCCA
D

0BBBBBBBBB@

1 �1 �2 �3 �4

0 1 2�1 3�2 4�3
0 0 1 3�1 6�2
0 0 0 1 4�1
0 0 0 0 1

1CCCCCCCCCA

�10BBBBBBBBB@

c0

c1

c2

c3

c4

1CCCCCCCCCA
(6)
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Notice that for each j D 0; :::; J , the coef�cients in column j C 1 of M are just the binomial coef�cients

of .X C e/ j D
P j
kD0

� j
k
�
X j�kek . The true treatment effect � D b0 is given by the �rst element of the

right-hand side of equation (6), which is equation (5).

For the case where e has a uniform distribution, �k D 1= .k C 1/ and M becomes

M D

0BBBBBBBBB@

1 1
2

1
3

1
4

1
5

0 1 1 1 1

0 0 1 3
2 2

0 0 0 1 2

0 0 0 0 1

1CCCCCCCCCA
so

0BBBBBBBBB@

b0

b1

b2

b3

b4

1CCCCCCCCCA
D

0BBBBBBBBB@

1 �12
1
6 0 � 1

30

0 1 �1 1
2 0

0 0 1 �32 1

0 0 0 1 �2

0 0 0 0 1

1CCCCCCCCCA

0BBBBBBBBB@

c0

c1

c2

c3

c4

1CCCCCCCCCA
which then gives equation (4).

5 Fuzzy Designs

Continue to let X�i equal the true continuous age minus c for individual i , let Ti be the indicator of whether

person i is treated or not, and let T �i D I
�
X�i � 0

�
be the crossing threshold dummy. In the RD literature

an individual i is de�ned to be a complier if for that person Ti D I
�
X�i � 0

�
, so a complier is treated if

and only if his true age equals or exceeds the threshold. Sharp design RD assumes everyone is a complier.

Fuzzy design RD relaxes this assumption, so unlike in the sharp design, it is no longer assumed that

Ti D T �i for all individuals.

Still de�ne gt .X�/ D E.Y .t/ j X�/ for t D 0; 1. Note that in this case gt .X�/ 6D E.Y j X�; T � D t/.

Also de�ne

�Y D E
�
Y j X� D 0; T � D 1

�
� E

�
Y j X� D 0; T � D 0

�
,

so in the special case of sharp design �Y D g1 .0/ � g0 .0/, which equals the RD treatment effect � .

Similarly de�ne

� T D E
�
T j X� D 0; T � D 1

�
� E

�
T j X� D 0; T � D 0

�
,

so � T D 1 for sharp design RD, and 0 < � T < 1 for fuzzy design RD.

Under well known standard conditions, the fuzzy design RD local treatment effect � f is given by

� f D
�Y

� T
; (7)

where the numerator �Y is the size of the jump or discontinuity in the mean outcome at the threshold,

while the denominator � T is the size of the jump in the probability of the treatment at the threshold. Both

the numerator and the denominator may involve rounding bias.
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The estimator of the previous sections can therefore be immediately extended to estimation of fuzzy

design treatment effects. First apply the exact same estimator as in the sharp design case to obtain a

consistent estimatorb�Y of �Y . Then replace Y with T and apply the exact same estimator again to obtain
a consistent estimatorb� T of � T . The fuzzy design treatment effect estimator is thenb�Y =b� T .
To illustrate the fuzzy design estimator, consider the case where the functional forms for E .Y j X�; T � D t/

and E .T j X�; T � D t/ are fourth order polynomials, so J D 4. Then one can use least squares to estimate

the coef�cients in the models

Yi D d0 C d1X i C d2X2i C d3X
3
i C d4X

4
i C

�
c0 C c1X i C c2X2i C c3X

3
i C c4X

4
i

�
T �i C "i . (8)

and

Ti D r0 C r1X i C r2X2i C r3X
3
i C r4X

4
i C

�
s0 C s1X C s2X2i C s3X

3
i C s4X

4
i

�
T �i Ce"i . (9)

Then, assuming a uniform distribution for e, the fuzzy design treatment effect will be given by

� f D
c0 � 1

2c1 C
1
6c2 �

1
30c4

s0 � 1
2s1 C

1
6s2 �

1
30s4

(10)

which corresponds to equation (4) in the numerator and in the denominator. This is in contrast to the

incorrect discrete data treatment effect � 0f D �
0
Y =�

0
T D c0=s0. The order of the polynomials in these two

equations need not be the same, and these fourth order polynomial formulas cover lower order polynomials

as special cases by setting higher order coef�cients equal to zero.

6 Medicare and Insurance Coverage

This section provides an empirical application examining the impact of qualifying for Medicare at age 65

on the health insurance coverage rate in the United States. Others have applied RD analyses to Medicare

quali�cation (see, e.g., Card, Dobkin, and Maestas, 2008). I use this example because the presence of a

discontinuity in the insurance rate due to the treatment (Medicare eligibility) is uncontroversial, and be-

cause the available data can be used to verify the accuracy of the proposed method for correcting rounding

bias.

The data used are from the US Health and Retirement Study (HRS). The HRS is a national panel survey

of individuals over age 50 and their spouses in the US. It has extensive information on health insurance,

health, employment, and demographics etc. Data have been collected every two years since 1992. Nine

waves of data have been released so far. The HRS is suitable, as it focuses on the elderly, covering an
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Figure 1: The age (in years) pro�le of health insurance coverage rates, HRS 1992 - 2008

age period particularly relevant to the empirical analysis here. More importantly, the HRS has available

both age in months and age in years, so one can compare the bias corrected estimates based on yearly age

data with estimates based on monthly age data, and thereby empirically evaluate how well the proposed

correction works. I pool together all waves of data to have a suf�ciently large sample. After observations

with missing values deleted, the �nal samples have 60,290 to 135,582 observations, depending on the age

ranges examined.

Let the outcome Y be the dummy indicating whether one has any health insurance, the cutoff c be

age 65, and X be the reported age minus 65. The (sharp design) treatment T D T � then corresponds to

crossing age 65, and thereby becoming eligible for Medicare.

Figures 1 and 2 show the age pro�les of health insurance rates, i.e., the age cell means of Y against age

in years and in months, respectively. These �gures clearly show a jump in insurance coverage at age 65. To

model this treatment effect, I �t second, third, and fourth order polynomials to annual data. The quadratic

model appears to under�t the model, while the fourth order polynomial tends to over�t especially for the

narrower age ranges considered (both graphically and in terms of statistical signi�cance of higher order

terms as well as the adjusted R2 of the regressions). I therefore focus on the third order polynomial as

the preferred model (i.e., equation (3) with c4 and d4 set to zero), though estimates using both third and

fourth order polynomials are reported for comparison. Attempts to include terms of degree �ve or more

are completely insigni�cant and including these higher order terms does improve overall �t of the model.
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Figure 2: The age (in months) pro�le of health insurance coverage rates, HRS 1992 - 2008

In practice, there is a tradeoff regarding how many years of data around the threshold to include

in the model. More years provides more observations, thereby adding to the precision with which the

model coef�cients can be estimated. However, the further included ages are from the threshold, the more

likely it is that the correct model speci�cation for these distant observations will differ from the correct

speci�cation near the threshold, risking speci�cation errors. I consider four ranges of data, speci�cally, 6,

9, 12, and 15 years below and above the threshold, corresponding to age ranges 59 - 70, 56 - 73, 53 - 76,

and 50 - 79. Note that the smallest window width here is less than half the largest window width.

Another speci�cation issue is inclusion of covariates. To assess the impact of covariates, I estimate

models that include year of survey dummies with or without additional demographic characteristics such as

gender, race (white/non-white), ethnicity (hispanic/non-hispanic), and education levels. Three education

levels represent less than high school (the default), high school or GED, and college or above.

The results are reported in Table 1. For each speci�cation, the top panel in Table 1 presents the naive

discrete data estimates corresponding to � 0 D c0, and the bottom panel represents the bias corrected

estimates corresponding to � in equation (4). Estimates based on monthly age data are reported in the

middle panel. Standard errors for the corrected estimator are obtained by the delta method, but it would

alternatively be numerically trivial to obtain standard errors by bootstrapping the data. All of the reported

estimates are statistically signi�cant at the 1% level.

For the preferred third order polynomial, the results are similar across different speci�cations, i.e.,
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Table 1 Estimated increases in the health insurance coverage rate at the Medicare eligibility age 65

(I) (II)

(1) (2) (3) (1) (2) (3)

[-6, +6) 0.128 0.124 0.125 0.107 0.106 0.107

(0.013)*** (0.013)*** (0.013)*** (0.031)*** (0.030)*** (0.031)***

[-9, +9) 0.128 0.127 0.128 0.124 0.119 0.121

(0.009)*** (0.008)*** (0.009)*** (0.014)*** (0.014)*** (0.014)***

[-12, +12) 0.126 0.126 0.127 0.120 0.119 0.119

(0.007)*** (0.007)*** (0.007)*** (0.010)*** (0.010)*** (0.010)***

[-15, +15) 0.124 0.126 0.126 0.129 0.128 0.129

(0.006)*** (0.006)*** (0.006)*** (0.008)*** (0.008)*** (0.008)***

[-6, +6) 0.119 0.118 0.119 0.112 0.113 0.113

(0.009)*** (0.009)*** (0.009)*** (0.011)*** (0.010)*** (0.011)***

[-9, +9) 0.119 0.120 0.120 0.116 0.115 0.115

(0.008)*** (0.008)*** (0.008)*** (0.010)*** (0.009)*** (0.010)***

[-12, +12) 0.119 0.120 0.121 0.116 0.117 0.116

(0.006)*** (0.006)*** (0.006)*** (0.008)*** (0.008)*** (0.008)***

[-15, +15) 0.119 0.121 0.120 0.119 0.120 0.120

(0.006)*** (0.006)*** (0.006)*** (0.007)*** (0.007)*** (0.007)***

[-6, +6) 0.118 0.117 0.117 0.112 0.113 0.113

(0.009)*** (0.009)*** (0.009)*** (0.012)*** (0.012)*** (0.012)***

[-9, +9) 0.117 0.117 0.118 0.116 0.115 0.116

(0.007)*** (0.007)*** (0.007)*** (0.009)*** (0.009)*** (0.009)***

[-12, +12) 0.118 0.119 0.119 0.114 0.113 0.114

(0.006)*** (0.006)*** (0.006)*** (0.008)*** (0.008)*** (0.008)***

[-15, +15) 0.117 0.118 0.119 0.119 0.120 0.120

(0.006)*** (0.005)*** (0.006)*** (0.007)*** (0.007)*** (0.007)***

Note: (I) 3rd order polynomial, (II) 4th order polynomial; (1) does not include addi-

tional covariates; (2) controls for year dummies; (3) controls for year dummies and

additional demographic variables. Top panel, estimates based on age in years; Middle

panel, estimates based on age in months; Bottom panel, discretization bias-corrected es-

timates. Standard errors are in parentheses; *Signi�cant at the 10% level; ** Signi�cant

at the 5% level; ***Signi�cant at the 1% level.

18



controlling for different covariates or using different ranges of data. Note that the monthly data es-

timates are systematically smaller than the yearly data estimates, which implies that rounding of age by

years in this data results in an overestimate of the impact of the Medicare program. In contrast, the bias

corrected annual data estimates are all close to, and slightly smaller than the monthly data estimates. So

going from annual to monthly data appears to correct most but not all of the bias associated with rounding.

This is what one would expect if the proposed model and bias correcting methodology are valid.

Across the annual data models, the discrete data treatment effect � 0 is estimated to be in the range of

0.124 to 0.128. These numbers represent the estimated increase in the fraction of individuals possessing

health insurance as a result of qualifying for Medicare. In contrast, the estimates based on age in months

are on average about 5% lower, in the range of 0.118 to 0.121. The bias corrected estimates are in a similar

range of 0.117 to 0.119, averaging about 6% lower than estimates using yearly age data.

In this application, the bias due to rounding, about 6%, is relatively small in percentage terms. This is

not surprising given the fact that the slope of E .Y j X/, the health insurance pro�le, changes very little

at the threshold (as clearly shown by �gures 1 and 2, and by the coef�cient estimates). As a result, the

leading term c1 in the correction expression � 0 � � D �12c1 C
1
6c2 �

1
30c4, is quite small. In absolute

terms, failing to correct for the rounding bias results in an overestimate of insurance coverage of 0.7 to 1.0

percent of the relevant population. The current population of the US that is over age 65 and hence quali�es

for medicare is approximately 38 million (according to the US Census), so even half of one percent of this

total is a large number of people.

7 The Retirement Consumption Puzzle in China

This section applies the proposed approach to investigating consumption changes around retirement in

China. Standard Life cycle models suggest that rational people smooth consumption over the life cycle,

which implies that consumption should not change at retirement when retirement is expected. However,

many empirical studies �nd that consumption (typically food consumption) drops signi�cantly at retire-

ment. This �nding is referred to as the "retirement-consumption puzzle."

Evidence of this puzzle has been mostly obtained from developed Western countries, including the

United Kingdom (Banks, Blundell, & Tanner, 1998), the United States (Bernheim, Skinner, and Wein-

berg, 2001; Aguila, Attanasio, and Meghir, forthcoming; Ameriks, Caplin, and Leahy, 2007; Haider and

Stephens, 2007; Hurd and Rohwedder, 2008), Canada (Robb and Burbridge, 1989), Germany (Schwerdt,

2005), and Italy (Battistin, Brugiavini, Rettore and Weber, 2010; Miniaci, Monfardini, and Weber, 2009;
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Borella, Moscarola, and Rossi, 2011). Evidence from developing countries is scanty.

Most analyses of the retirement-consumption puzzle depend on structural models. One exception is

Battistin, Brugiavini, Rettore and Weber (2009), who estimate RD models that exploit pension eligibility

rules in Italy.

This section conducts an RD analysis of the retirement-consumption puzzle in China, taking advantage

of the Chinese mandatory retirement rule. Since age is reported in years in the dataset used here, I apply the

proposed approach to correct the associated rounding bias. The Chinese case is interesting due to its unique

social and cultural environment, which differs in many ways from developed Western countries, and hence

may shed additional light on the underlying mechanism of consumption changes around retirement. One

way China differs from these other countries is that China has very high savings rates, so most households

may have saved enough to avoid signi�cant drops in consumption at retirement. In addition, cash transfers

from adult children to retirees are a common practice in urban China. This may also help to prevent

consumption declines that would otherwise result from inadequate accumulated wealth.

In China, the of�cial retirement age is 60 for male workers, 55 for white-collar female workers, and

50 for blue-collar female workers, with some exceptions applying to certain occupations and to dis-

abled workers.2 These mandatory retirement ages have not changed ever since the retirement system

was founded in the 1950s. Compared with pension eligibility rules, the mandatory retirement policy in

China may induce a sharper change in the retirement probability and hence helps more precisely identify

the causal impact of retirement on outcomes of interest.

The analysis here focuses on male workers, because female workers' labor supply is more complicated

and their mandatory retirement age depends on the types of their work. I look at food consumption, as food

is nondurable and is more likely than other consumption categories to change immediately at retirement.

The sample includes all urban male household heads who are labor force participants, so, for example,

homemakers are not included. Some workers may retire earlier than the mandatory retirement age, and

some may be re-employed after the of�cial retirement. Also, the mandatory retirement policy may not be

strictly enforced in the private sector compared to the state sector, including the state-owned enterprises

(SOE's) and the government units. As a result, the change in the retirement rate is less than one at 60,

which entails fuzzy design RD models.
2Those who have jobs that are risky, harmful to their health, or extremely physically demanding can retire 5 years before the

of�cial retirement ages, i.e., 45 for blue-collar female workers and 55 for male workers. Male workers who become disabled

and hence are unable to do their work can apply to retire at 50, while disabled female workers can retire at 45. Civil servants

also qualify for early retirement if they have worked for 30 years and are within 5 years of their retirement age.
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Data in this analysis are from the China Urban Household Survey (UHS), which are collected by

the National Bureau of Statistics (NBS) every year to monitor consumption in China and to construct

consumer price index (CPI). Complete data from �ve provinces and one municipality are used.3 The

pension system in China changed in 1997. In particular, the Chinese government adopted a combination

of individual accounts and social pooling as the uniform pension system in 1997. Before that, the welfare

of urban retirees was determined and provided entirely by their employers. To ensure that all retirees in

the sample are subject to similar pension rules, this analysis is based on data from 1997 to 2006.

Typically, eligible male workers can start their retirement application at the beginning of the month

they turn 60, and it may take more than one months to have the application approved, so a worker's true

age at retirement X� is typically between 60 and 61. Also, in the UHS dataset used here, the recorded

age (in years) X and retirement status T are determined at the end of the survey year.4 As a result,

those who follow the retirement rule and start to apply to retire when they turn 60 may not have their

retirement �nalized until their recorded age is 61. Consistent with these observations, the data show that

the retirement rate jumps signi�cantly at both 60 and again at 61. I therefore exclude the cutoff age 60 in

the estimation, assuming that the retirement change induced by the mandatory retirement policy is fully

realized at 61. This ensures that all individuals who are observed below the cut off age of 60 are drawn

from the pre mandatory retirement age pro�le h0 .X/, and all the individuals who are observed above

the cut off age are drawn from the post mandatory retirement age pro�le h1 .X/. I then estimate the

polynomial models using data from ages 59 and below and ages 61 and above, and evaluate changes at 60

by extrapolating these regression curves to the cutoff age of 60.5

Figures 3 and 4 show the age pro�les (age cell means) of the retirement rate and the logarithm of

household food consumption. The retirement pro�le shows an obvious jump and a mild slope change

crossing the retirement cutoff age 60 (normalized to 0 in the �gures). The jump represents an exogenous

change in the retirement rate induced by the retirement policy and provides identi�cation of the retirement

impact on food consumption. The modest slope change implies that rounding bias in the retirement rate

change may not be zero, but is possibly rather small.

In contrast to the retirement pro�le, the food consumption pro�le shows an obvious drop crossing the
3The �ve provinces are Liaoning, Zhejiang, Guangdong Shanxi, Sichuan, and the one city is Beijing.
4In particular, for years 2002 - 2006, employment information was collected in the �rst month of the survey year and updated

every month for any changes, so the �nal recorded retirement status re�ects the status at the end of the year.
5Note that this is somewhat similar to the alternative cases of discretization discussed in the extension section 7. The

similarity is that observations at 60 do not uniquely belong to either the pre- or the post- cutoff outcome pro�le, i.e., h0.X/ or

h1.X/.
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Figure 3: The age (in years) pro�le of retirement rates for male household heads, UHS 1997 - 2006
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Figure 4: The age (in years) pro�le of log (food consumption), UHS 1997 - 2006
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threshold age, along with a substantial change in slope. Before 60, food consumption increases steadily

with age, while after 60 food consumption declines rapidly. This large change in slope means that one

should expect substantial rounding bias in the estimated change in food consumption at the retirement age

of 60.

De�ne the outcome Y as the logarithm of household food expenditure. Let T be a dummy indicating

whether a household head has retired or not. Let c be the cutoff age 60, and X be the recorded age in

years minus 60. Log food consumption Y and retirement T are speci�ed as polynomial models as in

equations (8) and (9). These models are estimated using three different window widths, i.e., 6, 10, and

15 years above and below the cutoff. The sample sizes corresponding to the three window widths are

12,634, 22,628, and 34,133, respectively. In particular, linear models (setting dp and cp for p D 2; 3; 4 in

equation (8) to zero) are adopted for log food consumption, while third order polynomials (setting r4 and

s4 in equation (9) to zero) are used for the retirement rate, except that when using the short 6 years window,

a quadratic model is adopted in that case.6 These polynomial orders are chosen based on goodness of �t

measures and signi�cance of the coef�cients on higher order terms.

The estimation results are reported in Table 2. Bootstrapped standard errors are reported for the esti-

mated retirement effects on food consumption ((a)/(b) in Table 2). The naive biased and corrected retire-

ment effects in this case are given by � 0f D c0=s0 and � f D
�
c0 � 1

2c1
�
=
�
s0 � 1

2s1 C
1
6s2
�
, respectively. I

also try controlling for different covariates. The estimates on the left side of Table 2 (noted as (1) in the

Table) control for survey year dummies, family size, family size squared, and education levels, including

college or above, high school, and less than high school (the default). As a comparison, the estimates on

the right half of the table (noted as (2) in Table 2) control only for year dummies.

The preferred speci�cation is the one that uses data 10 years above and below the cutoff age 60 and

controls for the full set of covariates as discussed above. Note that household food consumption crucially

depends on family size and permanent income (proxied by education levels here), so including these co-

variates helps reduce a large fraction of the sample variation in log food consumption, and hence provides

estimates that are more precise and more robust to variation in window widths.

The top and the bottom panels in Table 2 present the biased and the corrected estimates, respectively.

For the speci�cation controlling for year dummies along with other covariates, the uncorrected estimates

of the retirement effect range from -0.165 to -0.186, representing a drop of 16.5% to 18.6% in food

consumption at retirement among those male workers who retire due to the mandatory retirement policy.
6Adopting a quadratic model for the retirement equation in this case means also setting s3 to zero.
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In contrast, the bias corrected estimates indicate a smaller 13.0% to 15.9% drop in food consumption at

retirement, so failing to account for rounding of age leads to an average overestimate of the impact of

retirement on food consumption by 3 percentage points.

Put it differently, bias correction results in roughly a decrease of 14% to 21% in the estimated re-

tirement effects on food consumption. For the alternative speci�cation when only controlling for year

dummies, RD estimates that do not correct for rounding bias indicate a consumption drop of 14.2% to

19.3%, while after correcting for the bias the estimated drop is 10.5 % to 15.6%. Again, the difference is

about 3 percentage points on average, representing a decrease of 16% to 26% in the estimated effects of

retirement.

Table 2 Effects of retirement on food consumption at the mandatory retirement age 60

(1) (2)

(a) (b) (a) /(b) (a) (b) (a) /(b)

[-6,+6] -0.053

(0.020)***

0.320

(0.030)***

-0.166

(0.064)**

-0.061

(0.021)***

0.318

(0.031)***

-0.193

(0.068)***

[-10,+10] -0.055

(0.014)***

0.295

(0.028)***

-0.186

(0.055)***

-0.055

(0.015)***

0.293

(0.028)***

0.188

(0.059)***

[-15,+15] -0.048

(0.012)***

0.297

(0.020)***

-0.165

(0.04)***

-0.042

(0.012)***

0.296

(0.017)***

0.142

(0.042)***

[-6,+6] -0.041

(0.020)***

0.317

(0.033)***

-0.130

(0.67)*

-0.049

(0.021)***

0.315

(0.033)***

0.156

(0.071)**

[-10,+10] -0.044

(0.015)***

0.279

(0.032)***

-0.159

(0.059)***

-0.048

(0.015)***

0.276

(0.032)***

-0.158

(0.062)**

[-15,+15] - 0.039

(0.012)***

0.301

(0.018)***

-0.131

(0.04)***

-0.032

(0.012)***

0.304

(0.018)***

-0.105

(0.042)**

Note: (a), change in log food consumption at 65; (b), change in the retirement rate at

65; (a)/(b) effect of retirement on food consumption. (1) controls for year dummies

family size, family size squared, and education levels; (2) only controls for year

dummies. Standard errors are in the parentheses; *signi�cant at the 10% level; **

signi�cant at the 5% level, *** signi�cant at the 1% level.

Overall, results from China are largely consistent with the existing evidence documented for many

developed Western countries, i.e., food consumption drops signi�cantly when male household heads retire
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at the mandatory retirement age, and that households do not seem to smooth food expenditures at retire-

ment even though the age of retirement is fully anticipated. RD models using age in years as the running

variable overestimate the food consumption drop at retirement. Because of the substantial change in the

slope of the food consumption pro�le around the mandatory retirement age, correcting for the rounding

bias has sizable effects on the estimated retirement effects in this case. Applying the proposed correction

appears to be both statistically and economically important.

8 Extensions: Other Forms of Rounding or Non-integer Threshold

So far the analysis has focused on rounding down to the nearest integer, as in the case of how age is

typically reported. However, Theorem 1 and Corollary 1 do not actually specify or require X to be X�

rounded down to the nearest integer. In particular, the assumptions that involve X are Assumptions A4,

A5, and A6. While these assumptions are plausible for discretization based on rounding down, they do

not require this type of rounding, and they may be applied to other types of rounding.

Still assumption A5 requires that there should be no mismeasurement in the crossing threshold dummy

I .X � 0/. This may not hold in other common types of rounding, such as rounding up or ordinary

rounding, i.e., rounding either up or down, whichever is closer. In the following I discuss these alternative

forms of rounding and provide simple extensions of the previous approach to handle these cases. In

particular, I show that one can simply discard observations at the cutoff, because the crossing threshold

dummy is mismeasured only at that point, i.e., the true crossing threshold dummy I .X� � 0jX D 0/

could be 0, while the observed crossing threshold dummy I .X � 0jX D 0/ is always 1. In these cases,

observations at the cutoff contains both above and below threshold outcomes, i.e., they contains data

generated by both the pre- and post-cutoff regression functions, h0.X/ and h1.X/.

To illustrate, suppose that age is now recorded by ordinary rounding and that the threshold c is still

age 62. Then individuals who are over 61.5 and under 62 will have their true crossing threshold status

I .X� � 0/ D 0, while at the same time they will have their recorded age be 62 (based on ordinary

rounding), and hence their observed crossing threshold status T � D I .X � 0/ D 1. These individuals

are misclassi�ed regarding their location relative to the threshold. This will tend to bias downward the

treatment probability change at the cutoff.

Note that discretization by ordinary rounding or rounding up with an integer cutoff can only cause

I .X� � 0/ 6D I .X � 0/ at X D 0. In the above example, by ordinary rounding, everyone over age 62.5

will have both their true age and their rounded age be above the cutoff, and hence both X� and X positive.
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Similarly, everyone strictly under age 61.5 will have both their true age and their rounded age be below

the cutoff and hence both X� and X negative. Discarding observations at the cutoff can ensure that one

only uses observations truly above the cutoff to estimate h0.X/ and those truly below the estimate h1.X/.

Another way in which rounding can cause the crossing threshold dummy to be mismeasured is when

the running variable is rounded to integer values while the threshold c is not an integer. For example, the

age at which people born in the years 1938 to 1942 qualify for full social security bene�ts in the United

States (called the full retirement age by the social security administration) ranges from 65 years and 2

months to 65 years and 10 months. In particular, for those who were born in 1939, the full retirement age

is 65 years and 4 months, i.e., 65.33 years. Individuals who are 65.33 to 66 years old will have passed the

full retirement age, given their recorded age of 65 (assuming rounding down), yet they will be mistaken as

still being below the cutoff.

Note that X is normalized by subtracting off the cutoff c, and so will be non-integer valued if the cutoff

is a non-integer. With rounding down, I .X � 0/ can fail to equal I .X� � 0/ only for the one observable

value of X right under the cutoff, i.e., the one value that lies in the interval �1 < X < 0, because the

observations that have X� right above the non-integer cutoff will be rounded down to below he cutoff.

Similarly, if X is discretized by always rounding up, then I .X � 0/ can fail to equal I .X� � 0/ only for

the one observable value of X right above the cutoff, i.e. the one value that lies in the interval 0 < X < 1.

Further, if X is discretized by ordinary rounding, then I .X � 0/ can fail to equal I .X� � 0/ for the one

observable value of X either right under or right above the cutoff, depending on whether the cutoff is

positive or negative.

In all these cases, the observed outcomes for X at or next to the cutoff contains a mix of observations

right above and right under the cutoff, so treating them as if they are all at or above the cutoff or all

below the cutoff leads to a biased estimate of the true treatment effect, in addition to the rounding bias that

involves all points away from the cutoff.

Another way to understand the problem of mismeasuring the crossing threshold dummy is to think of

its role as an instrumental variable (IV) in RD models. It is well known that the standard fuzzy design RD

estimator can be interpreted as a local IV estimator, using the crossing threshold dummy I .X� � 0/ as an

instrument for the treatment T . With these alternative types of rounding, the observed crossing threshold

dummy I .X � 0/ is mismeasured relative to the true instrument I .X� � 0/, and this mismeasurement

will introduce bias in the estimated treatment effect, in addition to the bias caused by rounding as in

Theorem 1.

To consistently handle all the above cases, consider the following simple extension to Theorem 1 and
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Corollary 1.

COROLLARY 2: Let assumptions A1 to A4 and A6 hold. Assume that if X � 1, then X� > 0, and

that if X � �1, then X� < 0, then the conclusions of Theorem 1 and Corollary 1 hold, replacing equation

(2) with

Y D
XJ

jD0 d j X
j C

XJ
jD0 c j X

jT � C " for all X � 1 or X � �1. (11)

Since these alternative forms of rounding cause trouble only for observations at one value of X such

that�1 < X < 1, Corollary 2 says that one can �x the problem by just discarding those observations from

the estimation. A similar approach, dropping observations for which the running variable is mismeasured

in an RD model, has been proposed by Barreca et al. (2010). In particular, Barreca et al. (2010) �nd that

birth weights are disproportionately represented at multiples of round numbers, which caused biased RD

treatment effect estimates when using birth weight as a running variable. To deal with the problem, they

suggest discarding observations corresponding to heaps in the running variable (i.e., 100 gram and ounce

multiples).

Ordinary rounding may not be common for reporting age, but may be more likely in other applications,

such as when the running variable is a test score. If one does have the ordinary problem rounding and apply

Corollary 2, then e will range from �:5 to C:5, instead of ranging from zero to one. If e is uniformly

distributed in this interval then �k D E
�
ek
�
D
R :5
�:5 e

kde D
�
.:5/k � .�:5/k

�
= .k C 1/ which is zero for

all even values of k, so many more elements of the matrix M will be zero than before, and hence the bias

from rounding in this case is likely to be smaller.

Corollary 2 can be extended to fuzzy designs in the same way as Corollary 1, by being applied in both

the numerator and denominator of the fuzzy design treatment effect � D �Y =� T .

9 Other Extensions and Generalizations

Let � .x�/ denote the RD local treatment effect at the age cC x�, so � .0/ equals the treatment effect � one

has been estimating, and � .x�/ is the treatment effect one would identify if the cutoff were cC x� instead

of c. In the sharp design case, � .x�/ D g1 .x�/ � g0 .x�/. If Assumption A2 is generalized to assume

that g0 .X�/ for X� < q0 and g1 .X�/ for X� > �q1 are polynomials for some positive values q0 and

q1 (which means making untestable modeling assumptions regarding counterfactuals) then the treatment
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effects � .x�/ will be identi�ed for all X� in the interval �q1 � X� � q0. This is because one can identify

and recover the coef�cients of the correct model gt .X�/ from the coef�cients of the estimated model

ht .X/. So if the models gt .X�/ remain correctly identi�ed in the counterfactual regions, that is, g0 .X�/

for 0 � X� � q0 and g1 .X�/ for �q1 � X� < 0, then the true treatment effects can be identi�ed and

estimated in those regions.

Even without generalizing Assumption A2, one can still identify and estimate @� .x�/ =@x� evaluated

at the point x� D 0. This is the Marginal Threshold Treatment Effect (MTTE) of Dong and Lewbel

(2011). It describes the marginal change in the RD treatment effect that would result from making a

marginal change in the cutoff threshold. With polynomial models, in the sharp design the true MTTE is

just b1, and so equals the second element of M�1C , while the naive biased MTTE based on rounded data

is c1, the second element of C . In the earlier example where J D 4, given estimated coef�cients ck for

k D 1; 2; 3; 4 from the regression (3), the the true MTTE is given by b1 D c1�2�1c2�
�
3�2 � 6�21

�
c3C�

�24�31 C 24�2�1 � 4�3
�
c4, and for the uniform distribution case, this MTTE simpli�es to c1�c2C 1

2c3.

As before, these same results can be applied to lower order polynomials by setting the coef�cients ck for

higher values of k equal to zero.

Suppose E .T j X�/ has a kink (a discrete change in slope) instead of a discontinuity at X� D 0.

Recall that a t test can be used to test whether a discontinuity exists in the conditional treatment probability

E .T j X�/, i.e., to test the statistical signi�cance of the bias corrected estimateb� t . Dong (2011) shows that
in the case of fuzzy design RD, the treatment effect can still exist when there is only a slope change, and

can be identi�ed from a slope change rather than a level change in the treatment probability E .T j X�/

along with a corresponding slope change in the conditional mean outcome equation E .Y j X�/ at the

cutoff X� D 0. In particular, the RD treatment effect in this case is given by the ratio of the two slope

changes in the treatment and outcome regression functions at the cutoff. In this case, the �rst element of

the vector B D M�1C , i.e., b0 or the jump is zero, and the slope change required for Dong (2011)'s kink

based RD treatment effect estimator, is given by the second element of B D M�1C , or b1.

When J D 4, for the fuzzy design RD model given by equations (8) and (9), the naive discrete data

kink based treatment effect is given by the ratio of the two slopes in these two equations, i.e., � k D c1=s1.

Given that X is rounded, the slopes in the numerator and in the denominator may be biased, so one can

similarly apply the bias correction formula to obtain the corrected kink-based treatment effect. Assuming

the rounding error is uniformly distributed, the bias corrected kink-based RD treatment effect in Dong

(2011) is given by
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� 0k D
c1 � c2 C 1

2c3
s1 � s2 C 1

2s3
,

and more generally, it is given by

b1 D
c1 � 2�1c2 �

�
3�2 � 6�21

�
c3 C

�
�24�31 C 24�2�1 � 4�3

�
c4

s1 � 2�1s2 �
�
3�2 � 6�21

�
s3 C

�
�24�31 C 24�2�1 � 4�3

�
s4
.

10 Conclusions

In the context of RD models where the running variable is rounded and hence is discrete, the standard RD

estimation yields biased estimates of the RD treatment effects, even if the functional form of the model is

correctly speci�ed. In practice, this rounding or discretization bias can be very easily corrected. This paper

presents simple formulas to �x this bias and hence provides consistent estimates of RD treatment effects

given only rounded data of the running variable. The proposed approach does not require instrumental

variables, but instead uses information regarding the distribution of rounding errors within the discretiza-

tion cell, e.g., the distribution of ages within a year in the case of using age in years as a running variable.

This can be easily obtained from census data, and often close to uniform.

In one empirical application, I investigate the effect of Medicare eligibility at 65 on insurance coverage

in the US. Higher frequency age data (age in months) are available, and so provide a benchmark. I show

that the proposed method to correct the rounding bias works well and produces estimates that are consistent

with having and using data where age is more accurately measured.

In another empirical application, I provide an RD analysis that exploits the mandatory retirement policy

in China to test for the presence of, and estimate the magnitude of, a retirement-consumption puzzle in

China. In this case, the food consumption pro�le around the mandatory retirement age 60 for male workers

have relatively large slope changes, so the rounding bias is sizable, and the bias correction is empirically

important.

Although this paper's main analysis focuses on the case of rounding down and an integer cutoff, I

show that the proposed methodology can be immediately extended to cases involving non-integer cutoffs

or other common forms of rounding, such as ordinary rounding or rounding up to the nearest integer. In

addition, this paper uses age as the leading example, but the proposed approach can be used in other RD

applications where the running variable is similarly rounded. Examples include using calendar years, birth

weight in ounces or integer valued test scores as a running variable.
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A recent development in the RD literature is estimation of quantile RD treatment effects (Frandsen,

Frolich, and Melly 2012). One interesting topic for future research is then to extend the current results to

the case of estimating quantile RD treatment effects.

11 Appendix

Proof of Theorem 1: X equals the integer part of X�, and hence it is a deterministic function of X�;

therefore, E .Y j X�; T �/ D E .Y j X�; X; T �/. By this result and the law of iterated expectations, we

have

E
�
Y j X; T �

�
D E

�
E
�
Y j X�; T �

�
j X; T �

�
Therefore,

E
�
Y j X; T � D t

�
D E

�
E
�
Y j X�; T � D t

�
j X; T � D t

�
D E

�
gt
�
X�
�
j X
�
D E

�
gt .X C e/ j X

�
.

The second equality follows from T � D I .X � 0/ D I .X� � 0/ being a deterministic function of X�

and E.Y j X�; I .X� � 0/ D t/ D gt .X�/ for t D 0; 1 given a sharp design.

Given Assumption A3, de�ne the unknown polynomial coef�cients b j t by

gt
�
X�
�
D

JX
jD0
b j t X� j (12)

and let Bt be the column vector of elements b0t ; b1t ; :::; bJ t for t D 0; 1. Then

gt .X C e/ D
JX
jD0
b j t .X C e/ j D

JX
jD0

jX
kD0

�
j
k

�
b j te j�kX k D

JX
kD0

JX
jDk

�
j
k

�
b j te j�kX k

where
� j
k
�
is the binomial coef�cient j

k. j�k/ . Substituting this expression for gt into the equation for

E .Y j X; T � D t/ gives

E
�
Y j X; T � D t

�
D

JX
kD0

JX
jDk

�
j
k

�
b j tE

�
e j�k j X

�
X k

By A6 E
�
ek j X

�
D �k D E

�
ek
�
is known. By A1, A4, and the de�nition of ht .X/ ; we have h0 .X/ D

E .Y j X; T � D 0/ when X < 0 and h1 .X/ D E .Y j X; T � D 1/ when X � 0. Putting these equations

together gives

ht .X/ D
JX
kD0
ckt X k where ckt D

JX
jDk

�
j
k

�
� j�kb j t . (13)
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By A6, the value of ht .X/ is identi�ed at J (or more) values of X for t D 0; 1. Since the above shows

that ht .X/ is a polynomial of order J , and any polynomial of order J is uniquely identi�ed by its values

at J C 1 points, it follows that the coef�cients ckt are identi�ed. Note that one does not need to know the

polynomial order J a priori, since given this paper's assumption the observed values of ht .X/ will trace

out the polynomial of proper degree, thereby identifying J .

Equation (13) shows the connection between the coef�cients in the discrete data regression b j t and the

true continuous data regression ckt for j; k D 0; 1; :::; J: The following express this relationship in matrix

notation.

For t D 0; 1, de�ne the upper triangular J C 1 by J C 1 matrix M as having the element
� j
k
�
� j�k in

row k C 1 and column j C 1 for all j; k satisfying 0 � k � j � J . All elements of M below the diagonal

are zero. Recall that Ct consists of elements ckt for k D 0; 1; :::; J and that Bt consists of elements b j t for

j D 0; 1; :::; J . Given the matrix M , ckt D
PJ

jDk
� j
k
�
� j�kb j t , for t D 0; 1 can be rewritten as

Ct D MBt ,

The matrix M is identi�ed because, by A6, each � j�k is identi�ed.

Note that the matrix M is nonsingular, because it is triangular with all ones on its diagonal, and all

�nite values off its diagonal, as e is bounded between 0 and 1. Then M can be inverted to solve for b j t for

j D 0; 1; :::; J given the already identi�ed constants ckt for k D 0; 1; :::; J . Therefore the constants b j t

are all identi�ed, and Bt D M�1Ct . For the special case that e D 0 with probability one, b j t D c j t for all

j and t . Then � D g1 .0/� g0 .0/ D b01 � b00 is identi�ed. Also the conditional mean functions g0 .X�/

for X� < 0 and g1 .X�/ for X� � 0 are identi�ed, since gt .X�/ D
PJ

jD0 b j t X� j .

Proof of Corollary 1: By construction E.Y j X; T �/ D h0 .X/ C [h1 .X/� h0 .X/] T �, and this

equation along with equation (13) yields equation (2) with d j D c j0 and c j D c j1 � c j0 for j D 0; :::; J ,

and hence part (i) of the Corollary holds given the property that any polynomial of degree J is identi�ed

by J C 1 points.

By construction, A equals the vector of elements b00; b10; :::bJ0, and B equals B1 � B0, which equals

the vector of elements b01 � b00; b11 � b10; :::bJ1 � bJ0. Recall B is de�ned as a vector of elements

b0; b1; :::bJ . So � D b0 is the �rst element of B. Similarly, by construction D equals the vector of elements

c00; c10; :::cJ0 and C equals C1�C0, which equals the vector of elements c01�c00; c11�c10; :::cJ1�cJ0,

Recall C is de�ned as a vector of elements c0; c1; :::cJ . So � 0 D c0 is the �rst element of C . By Theorem

1, Ct D MBt , for t D 0; 1, which implies MA D D and MB D C , and M is invertible by Theorem 1,
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which gives part (ii). Also, Ct D MBt for t D 0; 1 leads to C1 � C0 D M .B1 � B0/, i.e., C D MB. The

�rst row of this matrix equation is c0 D b0 C
PJ

jD1 b j� j and so part (iii) holds.

Proof of Corollary 2: The assumptions of Corollary 2 imply that T � D I .X � 0/ for all values of

X � 1 or X � �1, i.e., there is no mismeasurement error in T �. So repeat the steps of the proofs of

Theorem 1 and Corollary 1 using all values of X except those having �1 < X < 1.
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