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Abstract
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1 Introduction

Assume we have a standard regression discontinuity model, where T is a treatment indicator,

X is a so-called running or forcing variable, c is a threshold for X at which the probability

of treatment changes discretely, and Y is some observed outcome that may be affected both

by treatment and smoothly by X . The usual goal in these models is to estimate the effect

of treatment T on the outcome Y , and the main result in this literature is that under weak

conditions this treatment effect can be nonparametrically identi�ed and estimated at the point

where X D c. In this paper we consider the question, "how would the effect of T on Y

(at X D c) change if c were changed a little?" We call this effect the "Marginal Threshold

Treatment Effect," or MTTE.

To illustrate, consider three examples. Chay and Greenstone (2005) examine impacts of

the US Clean Air Act Amendments (CAAA) of 1970, which requires that a county be given

the designation of �nonattainment� status if its pollution concentrations exceed a federally de-

termined ceiling. The CAAA imposes stringent polution abatement regulations on �nonattain-

ment� counties. Here T indicates nonattainment status so the treatment consists of stringent

pollution regulations, X is the pollution concentration measure, c is the pollution ceiling, and

Y is the subsequent pollution reduction or a side effect like housing value increases. In this

sharp regression discontinuity design, our MTTE would be used to address questions such as

how the effectiveness of the regulations in reducing pollution would change, or how housing

prices would be affected, if the pollution ceiling were marginally raised or lowered.

A simpler example is the original Thistlethwaite and Campbell (1960) regression discon-

tinuity paper, where T is receipt of a National Merit Award, X is the test score on the National

Merit Award qualifying exam, c is the exam grade required to qualify for the award, and Y is

receipt of other college scholarships (and other outcomes). In this application the treatment ef-

fect is the increase in college scholarships resulting from receiving the National Merit Award,

and our paper's goal would be to evaluate how the odds of winning college scholarships would
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change if the National Merit Award standards were raised or lowered.

A fuzzy regression discontinuity design example is Jacob and Lefgren (2004), who con-

sider an application in which many students are mandated to attend summer school if an exam

score is below a cutoff. In this case, T is summer school attendance, X is minus test score on

the exam, c is minus the required cutoff exam grade and Y is academic performance in higher

grades. This design is fuzzy in part because some students obtained waivers that allowed them

to avoid summer school despite failing the exam. In this case the treatment effect is the change

in higher grade academic performance resulting from summer school attendence, and in this

fuzzy design that treatment effect is identi�ed for compliers, that is, the subpopulation who

take the treatment when X crosses the threshold c. Our MTTE would then be the change in

this treatment effect that results from a marginal change in c.

Thresholds are often set by policy, and knowing the direction and magnitude of changes in

effects resulting from a change in threshold can be important in practice. Many policy debates

center precisely on these types of questions, e.g., what are the effects on various health and

welfare measures of changes in the legal age for drinking, smoking, or mandatory retirement?

Or, in the previously described applications, what are the impacts of changing the pollution

ceiling or passing test grade cutoffs?

In discussing regression discontinuity methods Hahn, Todd, and van der Klaauw (2001)

note that, "A limitation of the approach is that it only identi�es treatment effects locally at the

point at which the probability of receiving treatment changes discontinuously... It would be of

interest, for example, if the policy change being considered is a small change in the program

rules, such as lowering or raising the threshold for program entry, in which case we would

want to know the effect of treatment for the subpopulation affected by the change." Our MTTE

addresses this issue, by showing how the effect of treatment changes given a marginal change

in the threshold. Our results may also be taken as an example of a marginal policy analysis of

the sort advocated by Carneiro, Heckman, and Vytlacil (2010) and Heckman (2010).
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For simplicity, consider �rst a simple parametric treatment effect model Y D � C �X C

�T C 
 T X C e. Suppose we have a sharp design, so T is one if and only if X exceeds a

threshold c. In this parametric model the average treatment effect conditioning on X D x is

just E .Y j T D 1; X D x/� E .Y j T D 0; X D x/ D � C 
 x . Evaluating this expression at

x D c gives the treatment effect evaluated at the threshold, that is, � C 
 c. The MTTE in

this model is then the derivative of this treatment effect with respect to c, which is just the

coef�cient 
 .

This parametric model delivers our desired slope effect, the MTTE. So would a polyno-

mial functional form, as in chapter 6 of Angrist and Pischke (2008). But is this identi�cation

due to functional form, or can the MTTE be nonparametrically identi�ed? In parametric

models the treatment effect is identi�ed both at x D c and for values x 6D c (implying iden-

ti�cation of the MTTE) only because the functional form allows us to evaluate objects like

E .Y j T D 1; X D x < c/, even though in the data we could never see any observations hav-

ing both T D 1 and x < c. One might think that nothing regarding changes in c can be

identi�ed nonparametrically, because we only observe treatment at x D c itself.

However, in this paper we show that, given some minimal smoothness assumptions, the

effects of marginal changes in c can in fact be nonparametrically identi�ed. We prove identi-

�cation of the MTTE formally for both the sharp and fuzzy design nonparametric regression

discontinuity models, and describe simple estimators for the MTTE in both designs.

Let Y .t/ denote the potential outcome as in Rubin (1974), meaning what Y would equal

if T D t for t D 0 and for t D 1, so Y D Y .1/ T C Y .0/ .1� T /. The advantage of

the regression discontinuity design is that under weak conditions it permits nonparametric

identi�cation of � .c/, the conditional average treatment effect (ATE) conditional upon X D c,

that is, � .c/ D E .Y .1/� Y .0/ j X D c/. See, e.g., Hahn, Todd, and van der Klaauw (2001)

for laying this out as well as Lee and Lemieux (2010), Imbens and Wooldridge (2009) or

Imbens and Lemieux (2008) for recent surveys that discuss these conditions.
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The practical usefulness of knowing � .c/, or some variant such as the effect on compliers

in a fuzzy design, is a matter of debate (see, e.g. Deaton 2009, Heckman and Urzua 2010,

Heckman 2010, and Imbens 2010), but at a minimum such estimands can provide useful

guidance for construction of structural models if desired, or may be combined with other

information to provide evidence of external validity and hence wider applicability in practice.

The main result in the literature on sharp design regression discontinuity is that, given some

mild regularity conditions, � .c/ is identi�ed as limx#c E .Y j X D x/�limx"c E .Y j X D x/.

For fuzzy designs, this expression is divided by a similar difference in conditional expectations

of T , corresponding to the change in treatment probabilities at the threshold. The required reg-

ularity conditions include continuity of E .Y .t/ j X D x/ at x D c. In practice, local linear

(or higher order local polynomial) regressions are used for estimation, for technical reasons as

discussed by Hahn, Todd, and van der Klaauw (2001) and Porter (2003), and the asymptotic

theory for local linear or polynomial estimation (see Fan and Gijbels 1996) requires not just

continuity but continuous differentiability. Parametric models likewise consist of speci�ca-

tions like polynomials that are continuously differentiable in X given T . In most regression

discontinuity applications it would be dif�cult to construct a convincing economic argument as

to why E .Y .t/ j X D x/ would be continuous as required without also being differentiable,

and this is re�ected in the fact that empirical applications of regression discontinuity models

all use parametric or nonparametric estimators that assume continuous differentiability.

What we show in this paper is that, under the same conditions (continuous differentiability)

that are always assumed to estimate � .c/ in empirical applications, one can also nonparamet-

rically identify the derivative of � .c/. Formally de�ne this Marginal Threshold Treatment

Effect (MTTE) � 0 .c/ to be:

� 0 .c/ D
@� .c/
@c

D
@E .Y .1/� Y .0/ j X D c/

@c
.

In the fuzzy design case we might also condition on an individual being a complier.
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The usual intuition underlying regression discontinuity models is that, without untestable

functional form assumptions, nothing can be identi�ed about treatment effects at points other

than X D c, because nothing can be observed about Y .0/ at X > c and nothing can be ob-

served about Y .1/ at X < c. However, we show that just as smoothness permits identi�cation

of the treatment effect itself at c, so too will smoothness permit identi�cation of how treatment

effects change when c marginally changes.

Essentially, the logic is this. We start with the regression discontinuity based estimate

of � .c/, so to estimate � 0 .c/ D lim"!0 [� .c/� � .c � "/] =" we would like in addition an

estimate of � .c � "/ for some tiny positive ". The obstacle to identifying � .c � "/ is that it

depends in part on E .Y .1/ j X D x/ for x D c � " < c and we do not observe individuals

who have both X < c and Y D Y .1/. A similar problem would arise if we tried to estimate

� 0 .c/ using � 0 .c/ D lim"!0 [� .c C "/� � .c/] =", since in this case we would not observe

individuals having both Y D Y .0/ and X > c. To overcome these obstacles, observe that

differentiability of E .Y .1/ j X D x/ implies that this function becomes arbitrarily close to a

line in an arbitrarily small neighborhood around c. We can identify this line using data where

X is greater than but arbitrarily close to c, and then extrapolate the line an arbitrarily small

distance to X D c � ", thereby identifying � .c � "/, and hence identifying � 0 .c/. This line

and its extrapolation is approximate, but the approximation error goes to zero as " goes to

zero.

Once we have obtained an estimate of � 0 .c/, we can use this MTTE to provide estimates of

the approximate effect of small discrete changes in the threshold c, exactly the way that, e.g.,

price elasticity estimates are used to approximate the effects of small changes in prices such

as those arising from a marginal change in a sales tax or value added tax. For example, if the

government raised or lowered the ceiling threshold pollution level (at which stringent polution

abatement regulations were imposed) a small amount from c to some other level cnew, then the

Taylor expansion � .cnew/ � � .c/C � 0 .c/ .cnew � c/ could be used to approximate � .cnew/.
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As in all reduced form analyses, the policy relevance of our estimand � 0 .c/ or � .cnew/

will depend on stability assumptions. We are identifying and estimating features of the func-

tion E .Y .1/� Y .0/ j X/, and so to interpret � .cnew/ as the conditional ATE that would be

observed if the threshold were changed to cnew, one would need to assume that the function

E .Y .1/� Y .0/ j X/ (evaluated in the neighborhood of X D c) would not itself change if the

threshold changed marginally. This policy invariance assumption (see, e.g., Heckman 2010)

should be at least a reasonable approximation in most RD applications, because RD already

assumes X cannot be precisely manipulated by individuals to cross the threshold, and because

we are only considering marginal changes in c.

A couple of other papers exist that appeal to derivative conditions for identi�cation in

RD analyses. Dong (2010) uses changes in the derivative of conditional expectations at the

threshold to identify treatment effects in applications where there is a kink (i.e., a change in

slope) but no actual discontinuity at the threshold. Perhaps the closest result to ours is a few

paragraphs in a survey article by Dinardo and Lee (2011), in which they informally propose

using a Taylor expansion at the threshold to identify an average treatment effect on the treated

(ATT) parameter. In contrast, we use a similar expansion to estimate a different object, that is,

we consider the impact of changing the threshold, and we provide results for both fuzzy and

sharp designs.

For simplicity we give assumptions and results �rst without consideration of covariates

other than the running variable X . We later discuss how additional covariates Z could be in-

cluded in the regressions. In addition, we show how our method can be extended to estimation

of higher derivatives of � .c/. We also provide an empirical illustration of our results, showing

how estimates reported by Card, Dobkin, and Maestas (2008) can be used to estimate how

the probability of take up of various types of insurance would change if the age of medicare

eligibility were marginally raised or lowered.
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2 The Marginal Threshold Treatment Effect

We present our results for sharp designs �rst, and later consider the extension to fuzzy designs.

ASSUMPTION A1: For each unit (individual) i we observe Yi ; Ti ; X i where Ti is a binary

treatment indicator, X i is a running variable, and Yi D Yi .1/ Ti C Yi .0/ .1� Ti / for potential

outcomes Yi .1/ and Yi .0/.

For ease of notation we will drop the i subscript when refering to the random variables

Y .1/, Y .0/, Y , T , and X .

ASSUMPTION A2 (sharp design): T D I .X � c/ for some known constant threshold c.

The support of X includes a neighborhood of c. E .Y .1/ j X D x/ and E .Y .0/ j X D x/ are

continuously differentiable in x in a neighborhood of x D c.

The Rubin (1974) unconfoundedness assumption for treatment estimation that Y .1/ ; Y .0/ ?

T j X holds trivially given Assumption A2, because T is a deterministic function of X . Con-

tinuity of E .Y .t/ j X D x/ for t D 0; 1 coupled with discontinuity of E .T j X D x/ at the

point x D c takes the place of the usual common support assumption that, along with uncon-

foundedness, is used for identifying average treatment effects.

Standard regression discontinuity identi�cation only requires continuity, not differentia-

bility, of

E .Y .t/ j X D c/ as in Assumption A2, and only requires a continuous density for X , not a

differentiable density. However, virtually all empirical implementations of regression discon-

tinuity models satisfy these stronger smoothness conditions. In particular, parametric models

generally assume polynomials or other differentiable functions for these expectations, while

most nonparametric estimators, including local linear regressions, impose continuous differ-

entiability of both regression functions and densities in their list of technical assumptions

required by asymptotic theory. It would be dif�cult to construct an economic argument for

8



why the expected value of potential outcome functions Y .t/ with respect to X should be con-

tinuous in X but not be smooth enough to satisfy Assumptions A2.

Dong (2010) also exploits differentiability of Y .1/�Y .0/, but in that paper the derivative

is used to help identify and estimate the average treatment effect itself, under more general

conditions than usual for regression discontinuity models (speci�cally, in fuzzy designs when

both the conditional mean of Y and the probability of treatment, as a functions of X , may have

a kink or change in slope at c instead of a discontinuous jump).

De�ne � .c/ to be the average treatment effect (ATE) conditional upon X D c, that is

� .c/ D E .Y .1/� Y .0/ j X D c/

and de�ne

g .x/ D E .Y j X D x/ .

Given Assumptions A1 and A2, the main result in this literature is that � .c/ is identi�ed by

� .c/ D lim
x#c
g .x/� lim

x"c
g .x/ . (1)

and can be consistently estimated by replacing the conditional expectations g .x/ for x > c

and for x < c with either nonparametric regressions (assuming X is continuously distributed

with a suf�ciently smooth density function) or by parametric regression estimators.

It will be convenient later to use the notation hC .x/ D lim"#0 h .x C "/ and h� .x/ D

lim""0 h .x C "/ for any function h, so we can rewrite equation (1) as

� .c/ D gC .c/� g� .c/ . (2)

To show identi�cation of � 0 .c/ D @� .c/ =@c we require one-sided derivatives. The right and

left derivatives of a function h .x/ at the point x , which we will denote as h0C .x/ and h0� .x/
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respectively, are de�ned by

h0C .x/ D lim
"#0

h .x C "/� h .x/
"

and h0� .x/ D lim
""0

h .x C "/� h .x/
"

A property of right and left derivatives is that if a function h .x/ is differentiable at a point x ,

then h0C .x/ D h0� .x/ D @h .x/ =@x D h0 .x/.

THEOREM 1: If Assumptions A1 and A2 hold then

@E .Y .0/ j X D c/
@c

D g0� .c/ and
@E .Y .1/ j X D c/

@c
D g0C .c/ (3)

so the marginal threshold treatment effect MTTE is given by

� 0 .c/ D g0C .c/� g
0
� .c/ . (4)

Proofs are in the appendix. Given identi�cation of the threshold derivatives in Theorem

1, we can use a Taylor expansion to obtain an approximate estimate of the effect of a discrete

change in the threshold. For example, an estimate of what the treatment effect � .cnew/ would

be if the threshold were changed a small amount from c to cnew is

� .cnew/ � � .c/C .cnew � c/ � 0 .c/ . (5)

To provide some intuition for Theorem 1, suppose for the moment that potential outcomes

were linear in X , so for t D 0 and t D 1 we would have Y .t/ D at C bt .X � c/ C et .

Then � .c/ D a1 � a0 and � 0 .c/ D b1 � b0, which shows that in a linear model the MTTE is

constant and the same for all possible thresholds c. Here b1 is identi�ed and can be estimated

as the coef�cient of X in a linear least squares regression of Y on X using observations having
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X > c and similarly b0 is the coef�cient of X in a linear regression using observations having

X < c, so the MTTE b1 � b0 is easily identi�ed and estimated in this case. In this linear

model, we can identify how the treatment effect � .c/ D a1 � a0 would change in response

to any size change in the threshold, since in this model if the threshold were changed from c

to any cnew, the treatment effect would change by exactly .b1 � b0/ .cnew � c/, so � .cnew/ D

a1 � a0 C .b1 � b0/ .cnew � c/.

Return now to the nonparametric case where all we know about Y .t/ is that it is contin-

uously differentiable at c. This smoothness means that Y .t/ is approximately linear in the

neighborhood of c, and so the above linear model logic applies just using data in the neigh-

borhood of c. This is the logic that underlies local linear regression.

For estimation, one could use either parametric or local polynomial regressions to estimate

g .x/ separately above and below the threshold using observations having X > c and with

observations having X < c. These models directly provide consistent estimates of g0 .x/ for

x > c and for x < c, and which when evaluated at x D c will equal estimators of g0C .c/ and

g0� .c/. Taking the difference between these two derivative estimates then provides a consistent

estimator of the threshold effect � 0 .c/.

In particular, suppose we estimate Y D a1 C b1 .X � c/ C e1 by linear least squares

regression using just observations having c < X < c C " for some small positive ", and

estimate Y D a0 C b0 .X � c/ C e0 using just observations having c � " < X < c. These

regressions will be special cases of nonparametric local linear estimators (with a uniform

kernel function). Assuming that " ! 0 as the sample size goes to in�nity, the resulting

estimated nonparametric average treatment effect and threshold treatment effect will just be

given byb� .c/ Dba1 �ba0 andb� 0 .c/ Dbb1 �bb0.
Even more simply, these two regressions are equivalent to estimating Y D a0Cb0 .X � c/C

AT C B .X � c/ T C e by weighted least squares (or ordinary least squares if the variances

of e0 and e1 are the same), using observations having c � " < X < c C ", in which case
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the average treatment effect and threshold treatment effect will be given by b� .c/ D bA and
b� 0 .c/ D bB.

Regression discontinuity models are often estimated with an interaction term .X � c/ T ,

and we have shown that the coef�cient B of this term corresponds to the MTTE. This term

is generally included in RD model estimators as a control to improve precision of the esti-

mated treatment effectb� . Parametrically, inclusion of the interaction term allows for locally
nonconstant treatment effects, while nonparametrically inclusion of this term corresponds to

local linear estimation vs ordinary kernel regression, which reduces biases associated with

estimation of � at the boundary. bB is an estimate of how the treatment effect varies with X ,
but Theorem 1 shows that bB is also the response of the treatment effect to a change in the
treatment threshold c.

Regression discontinuity models are often estimated with the interaction term .X � c/ T �,

allowing the slopes of the conditional mean function E .Y j X/ to be different on either side of

the threshold. In the sharp RD design, T D T �, and so .X � c/ T � is the same as .X � c/ T .

We have shown that the coef�cient B of this term corresponds to the MTTE. This term is

generally included in RD model estimators as a control to improve precision of the estimated

treatment effect b� , as nonparametrically inclusion of this term corresponds to local linear

estimation vs ordinary kernel regression, which reduces biases associated with estimation of �

at the boundary. Parametrically, inclusion of the interaction term allows for treatment effects

to vary with the running variable. bB is then an estimate of how the treatment effect varies
with X . Under the policy invariance assumption that the function E .Y .1/� Y .0/ j X/ (in

the neighborhood of X D c) itself does not change if the threshold changed marginally, this

is the same as the response of the treatment effect to a change in the treatment threshold c, or

the MTTE.

Higher order terms like .X � c/2 and .X � c/2 T can be added to the regression without

changing the above analysis. Nonparametrically adding these terms will correspond to local

12



quadratic regression, which, as shown by Fan and Gijbels (1996), will generally have smaller

asymptotic bias (as a function of the bandwidth) for estimation of slopes than local linear

estimation.

3 Sharp Design Extensions: Covariates and Higher Order

Derivatives

It may sometimes be desirable to include covariates in RDmodels, e.g. to assess how treatment

effects vary across subpopulations. Let Z denote a vector of covariates, which is added to the

list of observables in Assumption A1. Then Theorem 1 still holds replacing E .Y .t/ j X D x/

with E .Y .t/ j X D x; Z D z/ for t D 0 and t D 1 everywhere (including in the proof), which

also implies replacing � 0 .c/, � .c/, and g .c/ with � 0 .c; z/, � .c; z/, and g .c; z/ respectively.

In practice functions of Z , possibly interacted with functions of X and T , can just be included

as additional regressors in the regression models discussed at the end of the previous section.

Theorem 1 can also be extended to identify and estimate higher order derivatives. For

example, if we replace the continuous differentiability in Assumption A2 with the assumption

that E .Y .t/ j X D x/ for t D 0 and t D 1 are continuously twice differentiable for all x in the

neighborhood of c, then by twice applying the proof of Theorem 1 we obtain @2� .c/ =@2c D

g00C .c/� g00� .c/.

If suf�cient data are available to precisely estimate these higher order derivatives in the

neighborhood of x D c, then these could be used to further re�ne estimates of the effects of

small discrete changes in c, e.g. for cnew close to c, a second order Taylor expansion gives

� .cnew/ � � .c/C .cnew � c/ � 0 .c/C
.cnew � c/2

2
� 00 .c/ . (6)

These higher order derivatives would be estimated using local polynomials of degree two or
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more, corresponding to the inclusions of terms like .X � c/2 T in the RD regressions.

4 Fuzzy Designs

We now extend Theorem 1 to fuzzy designs, analogous to Hahn, Todd, and van der Klaauw

(2001). Let T continue to indicate whether one is treated, but now let T � D I .X � c/, so

T would be the same as T � for all individuals if the design were sharp. An individual is

de�ned to be a complier if he has T D T �. Let D� D 1 if an individual is a complier and

zero otherwise, so D� D I .T D T �/. As before de�ne g .x/ D E .Y j X D x/ and now also

de�ne f .x/ D E .T j X D x/, so f .x/ is the probability of treatment given X D x .

For the fuzzy design we replace Assumption A2 with the following.

ASSUMPTION A3 (Fuzzy design): Assume the threshold c is a known constant. The sup-

port of X includes a neighborhood of c. E .D� j X D x/ > 0 for all x in a neighborhood of c.

E .Y .1/ j X D x/, E .Y .0/ j X D x/, E ..1� D�/ Y j X D x/ and E ..1� D�/ T j X D x/

are continuously differentiable for all x in a neighborhood of c.

Assumption A3 as stated rules out deniers (also known in the literature as de�ers), that is,

individuals having T D 1�T �, because their presence would violate the assumed smoothness

of E ..1� D�/ T j X D x/. It would be possible to allow for deniers by placing restrictions

on the treatment effects. In particular, Assumption A3 permits the local avearge treatment

effect to vary with x , but suppose instead the effect of treatment were assumed to be constant

across individuals having x in a neighborhood of c. Then, letting d� D I .T D 1� T �/ be the

indicator of deniers, our results will still hold if, in addition to assuming this local constant

treatment effect, we also add to Assumption A3 the condition that E .D� � d� j X D x/ 6D 0,

and replace 1� D� with .1� D�/ .1� d�/ everywhere it appears in Assumption A3.

In addition to E .Y .t/ j X/ being smooth in X as in Assumption A1, Assumption A3 also

requires that the conditional means of .1� D�/ Y and .1� D�/ T be smooth in X , that is,
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the outcomes and the treatments of noncompliers do not have jumps or kinks at the threshold

x D c. This smoothness may be derived from more primitive assumptions, e.g., monotonicity

assumptions on treatment T coupled with smoothness of E .Y .t/ j X/, or assuming equiva-

lences among expected outcomes across compliers and noncompliers. Constructing alterna-

tive primitive conditions that suf�ce for regression discontinuity estimation is an active area

of research (see, e.g., Battistin, Brugiavini, Rettore, and Weber (2009) and Lee and Lemieux

(2010) for recent examples) which we will not pursue further here.

The standard fuzzy design treatment effect estimator as in Hahn, Todd, and van der Klaauw

(2001) is

e� .c/ D gC .c/� g� .c/
fC .c/� f� .c/

(7)

which given Assumptions A1 and A3 can be shown to equal the local average treatment effect

for compliers de�ned as

e� .c/ D E �Y .1/� Y .0/ j X D c; D� D 1� (8)

as described in Imbens and Lemieux (2008), among others. This known result is consistent

with our speci�c assumptions, the proof of which is provided in the Appendix as Lemma 1.

Now consider estimation of the fuzzy marginal threshold treatment effecte� 0 .c/, de�ned
by

e� 0 .c/ D @e� .c/
@c

D
@E .Y .1/� Y .0/ j X D c; D� D 1/

@c
. (9)

THEOREM 2: If Assumptions A1 and A3 hold then the fuzzy marginal threshold treat-

ment effect MTTE is given by

e� 0 .c/ D g0C .c/� g0� .c/�
�
f 0C .c/� f 0� .c/

�e� .c/
fC .c/� f� .c/

(10)
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As before, the MTTE can be used to approximate the effect of treatment on compliers if

the threshold is changed a small amount from c to cnew, since by a Taylor expansion

e� .cnew/ �e� .c/C .cnew � c/e� 0 .c/ . (11)

One must be careful in interpreting this change in treatment effects, sincee� .c/ is the average
treatment effect over individuals who are compliers when the threshold is c, while e� .cnew/
is the average treatment effect over individuals who are compliers at the new threshold cnew.

So for example, if the eligibility threshold for some social welfare or assistance program were

changed from c to cnew, individuals who were compliers when the threshold was c might no

longer be compliers at cnew, and vice versa.

Let p .c/ denote the fraction of the population that are compliers when the threshold equals

c. The proofs of Lemma 1 and Theorem 2 show that p .c/ D fC .c/ � f� .c/ (this could

also be obtained by applying the sharp design estimator using T in place of Y and T � in

place of T ) and that p0 .c/ D f 0C .c/ � f 0� .c/, so Equation (10) can be written as the sum of

two terms,
�
g0C .c/� g0� .c/

�
=p .c/ and p0 .c/e� .c/ =p .c/. The �rst of these terms is essen-

tially the MTTE given the probability of compliance p .c/, while the second term, which is

proportional to p0 .c/, accounts for the effect on the MTTE of changes in the probability of

compliance that occur when c marginally changes.

Applying the Taylor expansion again we can approximate the proportion of the population

who would be compliers at a new threshold cnew by p .cnew/ � p .c/C .cnew � c/ p0 .c/. So

even though the set of compliers can change in unknown ways when the threshold changes,

we can approximate both p .cnew/, the fraction of the population who would be compliers at

the new threshold cnew, and the treatment effect e� .cnew/ on those compliers. For example,
in the above social welfare case, given a proposed change in the eligibility threshold, we
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could approximately estimate both the probability of compliance at the new threshold and the

corresponding average treatment effect at the new threshold. The smaller the proposed change

in threshold, the better will be the quality of these approximations.

One way to do estimation in this fuzzy design case would be to estimate Yi D aC C

.X i � c/ bC C eCi and Ti D rC C .X i � c/ sC C uCi by ordinary least squares using just

observations having c < X i < c C ", and estimate Yi D a� C .X i � c/ b� C e�i and Ti D

r� C .X i � c/ s� C u�i using just observations having c � " < X i < c, where " is some

small positive constant. Here e and u are error terms and a, b, r , and s are constant regression

coef�cients, with subscripts + and - denoting whether they are estimated using data above or

below the threshold, respectively. With these estimates the fuzzy design treatment effect and

fuzzy design marginal threshold treatment effect estimators are then given by

be� .c/ D baC �ba�brC �br� and be� 0 .c/ D bbC �bb� � .bsC �bs�/be� .c/brC �br� . (12)

These estimators are equivalent to nonparametric local linear based estimation using a uniform

kernel. The next section provides additional estimation results.

5 Instrumental Variables Estimation

Fuzzy design models are often expressed and estimated in the form of instrumental variables

models. Here we show the relationship between these IV model coef�cients and the MTTE.

Consider the model

Yi D � C X i� C Ti� C X iTi
 C ei (13)

for data having c � " � X i � c C " where it is assumed that

E
�
ei j X i D x; T �i D t; D

�; c � " � x � c C "
�
D 0 (14)
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either for some �xed " > 0, or just in the limit as "! 0. It follows from these equations that

the coef�cients �, �, �, and 
 can be estimated by applying linear instrumental variables (or

equivalently two stage least squares) estimation to equation (13), using X i , T �i , and X iT
�
i as

instruments.

There are two ways to interpret this model. If equation (13) is assumed to hold for some

constant ", then this model corresponds to imposing the parametric functional form of equation

(13), in which the treatment effect is assumed to be linear in a neighborhood of c.

Alternatively, if " ! 0 as a sample size n ! 1, then the linear regressions in each

stage of the two stage least squares are like local linear estimators (with a uniform kernel)

of arbitrary smooth nonparametric speci�cations of Y and T as functions of X and T �. In

this case equation (14) only needs to hold in the limit as " ! 0, meaning that there is local

randomization of who lies above versus below the threshold c among individuals having X

arbitrarily close to c. This will occur if, e.g., individuals do not have perfect control over X ,

such as in the test score cases where among individuals of identical skill or education levels,

there is some random variation in the exact score that each achieves on the test.

It follows from equations (13) and (14) that

E
�
Yi j X i D x; Ti D t; D� D 1

�
D � C x� C �t C xt
 for c � " � x � c C "

(because compliers have D� D 1 and Ti D T �i ) so in particular at x D c the average treatment

effect for the compliers is

e� .c/ D E �Yi j X i D c; Ti D 1; D� D 1�� E �Yi j X i D c; Ti D 0; D� D 1� D � C c

and the MTTE in this model is therefore just

e� 0 .c/ D @e� .c/ =@c D 
 .
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The MTTE exactly equals the coef�cient of the interaction term X iTi in this model.

An equivalent way to write equations (13) that is more convenient empirically is

Yi De� C .X i � c/e� C Tie� C .X i � c/ Tie
 C ei (15)

which can be estimated as above using X i � c, T �i , and .X i � c/ T
�
i as instruments, and hase� .c/ De� ande� 0 .c/ D e
 D 
 . Note here that some of the coef�cients of equation (15), though

note
 , are implicitly functions of c. In particular,e� D � C c
 .
As in the sharp design case, higher order terms like .X i � c/2 and .X i � c/2 Ti (the lat-

ter now instrumented by .X i � c/ T �2i ) can be added to the regression without changing the

above analysis, and do so may reduce nonparametric bias in the slope coef�cient estimates as

in Fan and Gijbels (1996). Other covariates can also easily be added as additional regressors,

possibly interacted with T and X . In this case both the average treatment effect and the thresh-

old treatment effect could depend on covariates. Alternatively, with some restrictions on how

covariates appear in the model, one could partial covariates out by �rst regressing Yi on co-

variates both above and below the threshold, and then use the residuals from those regressions

in place of Yi in the estimation of treatment and threshold effects. See the estimation section

of the Appendix for more details.

6 Empirical Illustration

Card, Dobkin, and Maestas (2008) employ a sharp design regression discontinuity model to

evaluate the impact of reaching age 65 on a variety of outcomes relating to health insurance

coverage. The almost universal eligibility of medicare coverage at age 65 in the US is assumed

to produce the required discontinuity in eligibility status. In this model X is age, c is 65, T D

T � D I .X � c/, and outcomes Y considered include various types of health insurance. Some

people are eligible for and possess medicare coverage before age 65, and not everyone takes

19



up medicare afterwards, so modeling the impact of medicare coverage itself would require a

fuzzy design. However, in this application the treatment is sharply de�ned as reaching the age

of near universal eligibility.

Table 1: Treatment and Marginal Threshold Treatment Effects of

Age 65 Universal Medicare Eligibility on Insurance Coverage.

����������������������������������
Medicare Any Private 2+ Forms Managed

Percent at age 63-64 12.3 87.9 71.8 10.8 59.4

Age effect 1.5 (0.2) -0.2 (0.2) -1.3 (2.8) 1.1 (0.2) -2.7 (0.4)

Treatment effect � .65/ 59.7 (4.1) 9.5 (0.6) -2.9 (1.1) 44.1 (2.8) -28.4 (2.1)

MTTE � 0 .65/ 3.3 (1.6) 0.8 (0.2) 1.2 (0.5) 2.7 (1.2) 0.8 (0.9)

Approximate � .66/ 63.0 10.3 -1.7 46.8 -27.6
����������������������������������

The �rst three rows of Table 1 reproduce data from Table 1 in Card, Dobkin, and Maestas

(2008). The outcomes Y listed across the top of Table 1 are various types of insurance cov-

erage, speci�cally, Medicare coverage, any insurance, private coverage, two or more types of

insurance coverage, and managed care. For each of these outcomes the �rst row of the table

reports the percentage of people possessing that type of coverage at ages 63-64 and the second

row gives the coef�cient of age in the model, showing the estimated change in percentage

covered that results from each year of aging. The third row is the estimated sharp design re-

gression discontinuity treatment effect � .65/, corresponding to the increase in percentage of

people possessing insurance coverage that results from crossing the age 65 threshold.

The fourth row of Table 1 is taken from Table 4 in a supplemental online appendix to Card,

Dobkin, and Maestas (2008). There these authors report the coef�cients of other regressors

in their model, including the coef�cient of I .X � 65/.X � 65/ which by our Theorem 1
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corresponds in the sharp design to the marginal threshold treatment effect � 0 .65/. In the

�fth row of the Table we provide estimates of � .66/ based on equation (5), showing how the

treatment effect would differ if the age of eligibility were 66 instead of 65. Where available,

standard errors are provided in parentheses.

To interpret the results in Table 1, consider the �rst column on medicare coverage. The

standard analysis of these estimates says that each year a person ages increases the chance

that he has medicare coverage by 1.5 percentage points. At age 64 the chance of having

medicare coverage is 12.3% and crossing the age 65 universal eligibility threshold increases

this coverage probability by 59.7 percentage points.

What we have shown is that, in this parametric model with a sharp regression discontinuity

design, the estimated MTTE is 3.3, which means that if the threshold age of universal eligi-

bility were raised marginally, say from 65 to 66, then the treatment effect (where treatment is

crossing the age of universal eligibility) would increase by 3.3, from 59.7 to 63.0. Similarly, if

the threshold age were lowered marginally from 65 to 64, the treatment effect would decrease

by 3.3, from 59.7 to 56.4.

Card, Dobkin, and Maestas also reported squared age effects and cross products with treat-

ment, so a second order Taylor expansion re�nement would also be possible, though in this

application the estimated second order effects are small.

Every MTTE estimate in Table 1 is positive, showing that if the age of medicare eligibility

were raised, the impact of the eligibility age on all types of insurance coverage rates would

increase. However, as a policy prescription this gain in coverage rates for individuals at the

threshold age would have to be weighed against the individuals between age 65 and the new

eligibility age who postpone obtaining coverage until they became Medicare eligible.
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7 Conclusions

We have proved nonparametric identi�cation of the marginal threshold treatment effect (MTTE),

de�ned as the marginal change in a local treatment effect resulting from a change in the regres-

sion discontinuity threshold. We also provided simple estimators of the MTTE, and discussed

its usefulness for policy analysis.

One concern regarding our results is that policy changes of interest may be larger than

marginal. Given a parametric model for the outcome Y as a function of the threshold c, one

could estimate the effect of any size change in c. But the effects of nonmarginal changes

in c are then identi�ed only by functional form. Functional restrictions could instead be

used to extrapolate the impacts of our nonparametric estimates. For example, if treatment

effects are linear, then the approximate formula for evaluating a marginal policy change,

e� .cnew/ �e� .c/C .cnew � c/e� 0 .c/, becomes exact and so can be applied to larger changes in
c. Similarly, if treatment effects are quadratic then equation (6) becomes exact. These assump-

tions would still be less restrictive than the requirement that one have a complete, correctly

speci�ed parametric model.

As in all reduced form analyses, the policy relevance of the MTTE will depend on its exter-

nal validity. ourMTTE is a feature of the functions E .Y .1/� Y .0/ j X/ or E .Y .1/� Y .0/ j X; D� D 1/,

and so to interpret � .cnew/ as the conditional ATE that would be observed if the threshold were

changed to cnew, one would need to assume that these functions, (evaluated in the neighbor-

hood of X D c), would not themselves change if the threshold changed. This is a policy

invariance assumption, as discussed in, e.g., Heckman (2010). We feel this invariance will

be at least a reasonable approximation in most RD applications, because RD already assumes

X cannot be precisely manipulated by individuals to cross the threshold, and because we are

only considering marginal changes in c.
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8 Appendix A: Estimation

Here we provide more details regarding parametric and nonparametric threshold treatment

effect estimation. The treatment model estimators themselves that we provide here are not

new; they are equivalent to estimators summarized in surveys such as Imbens and Wooldridge

(2009) and Lee and Lemieux (2010). What is new here is just the application of these estima-

tors to the construction of threshold treatment effect estimators.

For parametric models, assume that for observations i having X i � c, so T �i D 1, the

outcome Yi has the functional form Yi D G .X i ; �C/ C ei while for X i < c we have Yi D

G .X i ; ��/ C ei , where G is known and E .ei j X/ D 0. The parameter vectors �C and ��

can then be estimated by the least squares regression

b��;b�C D arg min
��;�C

1
n

nX
iD1

�
Yi � T �i G .X i ; �C/�

�
1� T �i

�
G .X i ; ��/

�2
!i (16)

where !i D 1 for ordinary least squares, while values !i 6D 1 would correspond to weighted

least squares, which might be used to increase ef�ciency if ei has some heteroskedasticity of

known form. In particular, !i could vary with T �i , which would correspond to doing ordinary

least squares separately on data with T �i D 0 and T
�
i D 1. Then in the sharp design Ti D T

�
i ,b� .c/ D G �c;b�C�� G �c;b��� and the estimatorb� 0 .c/ is given by the ordinary derivatives

b� 0 .c/ D @G
�
c;b�C�
@c

�
@G

�
c;b���
@c

.

Note that in the sharp designG .x; �C/ D E .Y .1/ j X D x/ andG .x; ��/ D E .Y .0/ j X D x/.

Ordinary derivative formulas can be used inb� 0 .c/ because these potential outcome functions
are differentiable at c, and so have left and right derivatives that equal ordinary derivatives at

c.

Nonparametric local polynomial estimation is given by these same formulas, with the
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functions G being low order polynomials, and weights !i de�ned by

!i D
1
h
K
�
c � X i
h

�
(17)

where K is an ordinary kernel function (e.g., a normal or other symmetric probability density

function) and h is a bandwidth parameter that goes to zero as n goes to in�nity. For example,

local linear estimation takes �C D .aC; bC/, G .x; �C/ D aC � .x � c/ bC, and similarly for

��, so

ba�;bb� D arg min
a�;b�

1
n

nX
iD1

��
1� T �i

�
.Yi � .a� C .X i � c/ b�//

�2 1
h
K
�
c � X i
h

�
; (18)

and

baC;bbC D arg min
aC;bC

1
n

nX
iD1

�
T �i .Yi � .aC C .X i � c/ bC//

�2 1
h
K
�
c � X i
h

�
. (19)

Then, in the sharp design, the estimated average treatment effect and threshold treatment effect

are given by

b� .c/ DbaC �ba� and b� 0 .c/ DbbC �bb�
Details regarding the use of local polynomial estimators for regression discontinuity esti-

mation are provided in, e.g., Hahn, Todd, and van der Klaauw (2001), Porter (2003), Imbens

and Lemeiux (2008). Bandwidth choice is discussed in Ludwig and Miller (2007) and Im-

bens and Kalyanaraman (2009), among others. As discussed there, local linear or polynomial

estimation is preferable in terms of �nite sample properties to local constant (i.e., ordinary

kernel regression) estimation for estimation of the levels of functions in the neighborhood of a

boundary. By the same logic, local quadratic or higher order polynomial regression might be

preferable to local linear regression for estimation of derivatives at the boundary, as we require

forb� 0 .c/.
It should be noted that estimation of the threshold treatment effectb� 0 .c/ is more demand-
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ing in terms of data requirements than estimation of the treatment effect itself, b� .c/, since
more data in the neighborhood of c is required to accurately estimate a slope than an intercept.

In nonparametric estimation, this shows up in the form of slower optimal rates of convergence

for estimation of the derivatives of a conditional mean than for estimation of the conditional

mean itself.

If the design is fuzzy then de�ne T �i D I .X i � c/. Analogous to equation (16) let

b �;b C D arg min
 �; C

1
n

nX
iD1

�
Ti � T �i F

�
X i ;  C

�
�
�
1� T �i

�
F
�
X i ;  �

��2
!i (20)

where F
�
X i ;  C

�
is a model for the conditional mean of Ti (i.e., a propensity score) given

X i � c and F
�
X i ;  �

�
is the model for X i < c. Here F either corresponds to parametric

models, or is a polynomial when the weights !i are given by equation (17) and we have

local polynomial estimation of the conditional mean of Ti . We then obtain the fuzzy design

estimators be� .c/ D G
�
c;b�C�� G �c;b���

F
�
c;b C�� F �c;b �� (21)

and

be� 0 .c/ D @G.c;b�C/
@c �

@G.c;b��/
@c �

�
@F.c;b C/

@c �
@F.c;b �/

@c

�be� .c/
F
�
c;b C�� F �c;b �� . (22)

In the particular example of local linear estimation, we have equations (18) and (19) along

with

br�;bs� D arg minr�;s�

1
n

nX
iD1

�
I .X i < c/ .Ti � .r� � .X i � c/ s�//

�2 1
h
K
�
c � X i
h

�
; (23)

and

brC;bsC D arg minrC;sC

1
n

nX
iD1

�
I .X i � c/ .Ti � .rC � .X i � c/ sC//

�2 1
h
K
�
c � X i
h

�
. (24)
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Then the above fuzzy design treatment effect and fuzzy design threshold treatment effect esti-

mators become be� .c/ D baC �ba�brC �br� (25)

and be� 0 .c/ D bbC �bb� � .bsC �bs�/be� .c/brC �br� . (26)

In all of these models, one could straightforwardly add covariates Zi if desired. For exam-

ple, parameters like aC and a� could be replaced with linear functions like Z 0i AC and Z
0
i AC.

Treatment and threshold effects would then be obtained conditional on Z D z for given values

of z, or these conditional effects could be averaged across Z to obtain unconditional average

effects.

9 Appendix B: Proofs

PROOF of Theorem 1: Let ht .x/ D E .Y .t/ j X D x/ for t D 0; 1. For any x > c we

have h1 .x/ D g .x/ so these functions must have the same one sided derivatives h01C .x/ D

g0C .x/ for any x > c. By assumption ht .x/ is differentiable for x in a neighborhood of c,

so h01C .x/ D h
0
1 .x/, and continuity of the derivatives h

0
1 .x/ D g

0
C .x/ for all x > c in some

neighborhood of c implies that g0C .c/ D h01 .c/. The same argument based on x < c shows

that g0� .c/ D h00 .c/, so equation (3) holds.

LEMMA 1: If Assumptions A1 and A3 hold, then e� .c/ given by equation (8) satis�es
equation (7).

PROOF of Lemma 1: De�ne G t .x/ for t D 0 and t D 1 by

G t .x/ D E
�
Y .t/ j X D x; D� D 1

�
E
�
D� j X D c

�
C E

�
Y
�
1� D�

�
j X D c

�
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First consider g .x/ D E .Y j X D x/ in the fuzzy design.

g .x/ D E
�
Y D� C Y

�
1� D�

�
j X D x

�
D E

�
Y D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�
D 61dD0E

�
Yd j X D x; D� D d

�
Pr
�
D� D d j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�
D E

�
Y j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
Y
�
1� D�

�
j X D x

�
so

g .x/ D G1 .x/ for x > c and g .x/ D G0 .x/ for x < c (27)

By Assumption A3, G1 .x/ and G0 .x/ are continuous for x in the neighborhood of c, and

therefore the equalities in equation (27), which hold on open sets of x , extend to the boundary

c of those sets, that is,

lim
x#c
E .Y j X D x/ D gC .c/ D G1 .c/

and

lim
x"c
E .Y j X D x/ D g� .c/ D G0 .c/ .

Next, the assumed continuity of E ..1� D�/ Y j X D x/ at x D c then makes E ..1� D�/ Y j X D x/

be the same whether x # c or x " c, so

gC .c/� g� .c/ D G1 .c/� G0 .c/ D E
�
Y .1/� Y .0/ j X D c; D� D 1

�
E
�
D� j X D c

�
.

(28)

Now consider f .x/ D E .T j X D x/. We have

f .x/ D E
�
T D� C T

�
1� D�

�
j X D x

�
D E

�
T D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
D 61dD0E

�
Td j X D x; D� D d

�
Pr
�
D� D d j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
D E

�
T � j X D x; D� D 1

�
E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
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so

f .x/ D E
�
D� j X D x

�
C E

�
T
�
1� D�

�
j X D x

�
for x > c (29)

and

f .x/ D E
�
T
�
1� D�

�
j X D x

�
for x < c (30)

so by the assumed continuity of E .D� j X D x/ and E .T .1� D�/ j X D x/ for x in the

neighborhood of c,

fC .c/� f� .c/ D lim
x#c
E .T j X D x/� lim

x"c
E .T j X D x/ D E

�
D� j X D c

�
. (31)

Substituting equations (28) and (31) into equation (7) then yields equation (8).

PROOF of Theorem 2: By equation (27), for x > c we have g .x/ D G1 .x/. Taking

one sided derivatives of both sides for x in a neighborhood of c with x > c gives g0C .x/ D

G 01C .x/ D G 01 .x/, where the second equality holds because G1 .x/ is differentiable and so

has one sided derivatives equal to ordinary derivatives. It follows from Assumption A3 that

the derivative G 01 .x/ is continuous for x in the neighborhood of c, and therefore the equality

g0C .x/ D G 01 .x/ that holds for x in the range c < x < c C " for some " extends to the lower

boundary of this interval, making g0C .c/ D G 01 .c/. The same logic starting from equation

(27) for x < c shows that g0� .c/ D G 00 .c/ and therefore

g0C .c/� g
0
� .c/ D

@ [G1 .c/� G0 .c/]
@c

D
@
�
E .D� j X D x/e� .c/�

@c
(32)

D
@E .D� j X D c/

@c
e� .c/C � fC .c/� f� .c/

� @e� .c/
@c

where the second equality holds by equations (31) and (7) from Lemma 1, and the last equality

is from the derivative product rule and equation (31).
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By equation (29) and Assumption A3 f .x/ is differentiable in x for x > c, so

f 0C .x/ D f 0 .x/ D
@E .D� j X D x/

@x
C
@E .T .1� D�/ j X D x/

@x
for x > c

and these derivatives are continuous so this equation for x > c also holds at x D c. In the

same way by equation (30) and Assumption A3 we get

f 0� .x/ D
@E .T .1� D�/ j X D x/

@x
for x < c

which also holds at x D c, and putting together the last two equations at x D c with differen-

tiability of E .T .1� D�/ j X D x/ at x D c gives

f 0C .c/� f 0� .c/ D
@E .D� j X D c/

@c
(33)

Substituting equation (33) into equation (32) and solving the result for @e� .c/ =@c gives equa-
tion (10) which proves the theorem.
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