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1. Introduction

Several recent studies have documented large changes in the volatility of

macroeconomic fluctuations in the US over the post-war period. Kim and

Nelson (1999), McConnell and Pérez-Quiròs (2000), and Stock and Wat-

son (2002), among several others, have identified a large decline of output

growth volatility in the post-1984 sample compared to the previous two

decades (the large shift in volatility is commonly referred to as “The Great

Moderation”). The reduction in volatility is apparent if one looks at simple

measures as the variances of output growth and inflation in the 1950-1980

versus the 1980-2007 samples. Slightly more sophisticated approaches give

a similar message: Figure 1, for example, shows the conditional standard

deviations from GARCH models for inflation and output gap over time.1

The conditional standard deviations for both series increase in the 1970s

and substantially decline after the early 1980s.

Correctly modeling changes in volatility has been shown to be impor-

tant for understanding macroeconomic fluctuations. Sims and Zha (2006)

find that incorporating regime changes in the volatilities of disturbances

in a Bayesian VAR overturns the evidence of large regime switches in US

monetary policy. Primiceri (2005), instead, estimates a VAR in which he

allows for a continuously changing variance-covariance matrix: he similarly

concludes that the role played by the falling volatility of exogenous shocks

seems more important than monetary policy changes in explaining the recent

behavior of US inflation and unemployment.

The typical estimated DSGE model, however, still commonly assumes

that the shocks have maintained constant variance throughout the whole

sample (e.g., Smets and Wouters 2003, 2007, Lubik and Schorfheide 2004,

and An and Schorfheide 2007). The papers by Justiniano and Primiceri

1To compute the conditional standard deviation series, I have estimated AR(1) models
for inflation and output gap (using the deviation of real GDP from the CBO’s potential
GDP series), allowing for a GARCH(1,1) specification for the residuals.
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(2006) and Fernandez-Villaverde and Rubio-Ramirez (2007) are the first

to relax this assumption. Both papers introduce stochastic volatility in

optimizing DSGE models. They find that the volatilities of the shocks have

significantly changed over time and that accounting for those variations is

important to improve the models’ fit.

The existence of time-varying volatility in the economy, therefore, can be

now considered an empirical regularity. But what drives the changes in the

volatility of macroeconomic fluctuations?

In Justiniano and Primiceri (2006) and Fernandez-Villaverde and Rubio-

Ramirez (2007), the changes in volatility are modeled as exogenous. But

if these are an important feature of the economy as they appear to be, it

becomes crucial to strive to understand their potential causes.

This paper takes a step in this direction by presenting a model in which

stochastic volatility arises endogenously in the economy. I present a stylized

New-Keynesian DSGE model in which agents’ learning about the economy

has implications for macroeconomic volatility. Economic agents use simple

models to form expectations and need to learn the relevant model parame-

ters over time.2 Their learning speed is endogenous and depends on previ-

ous forecast errors. When the forecast errors are large, the agents become

concerned that the economy may be experiencing a structural break and,

therefore, they start assigning a larger weight to new information. When

the forecast errors are, instead, relatively modest, economic agents remain

confident about their model and they are less responsive to new informa-

tion. The endogenous time-varying learning speed has implications for the

volatility of the macroeconomic variables that agents are trying to learn. In

this way, agents’ learning with an endogenous gain can generate stochastic

volatility in the economy.

2See Evans and Honkapohja (2001) for a treatment of several models with adaptive
learning.
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The learning rule with an endogenously switching gain is in the same

spirit as the rule assumed by Marcet and Nicolini (2003), who used a similar

mechanism to study hyperinflations. Here, however, the gain is not fixed at

a particular value, but estimated from time series data.

This paper is related to the recent work by Branch and Evans (2007), in

which they present a framework in which regime changes in volatility arise

endogenously. The time-variation in volatility is induced by two channels:

agents’ parametric learning and the switching between different possible

predictors according to their previous forecasting performance. Model un-

certainty plays an important role in generating time-varying volatility in

their Lucas-type monetary model.3

The paper is also related to a recent paper by Lansing (2006). Lansing

presents a New Keynesian Phillips curve with boundedly-rational expecta-

tions, which can give rise to time-varying persistence and volatility. In a

single-equation setting for inflation, he can derive the optimal variable gain

as the fixed point of a nonlinear map that relates the gain to the autocor-

relation of inflation changes.4 Finally, the paper is related to the extensive

literature on adaptive learning in monetary policy models (e.g., Evans and

Honkapohja 2001) and, in particular to the papers that study the impor-

tance of learning to explain persistence or volatility in macroeconomic data

(Orphanides and Williams 2003, 2005a,b, 2006, 2007, Adam 2005, Milani

2007, and Murray 2007).

The simulation results show that time variation in the gain can poten-

tially generate substantial time-varying volatility in the inflation and output

3This paper and the Branch and Evans’ approaches should be seen as complementary.
A more realistic model, in fact, would possibly include agents that endogenously adjust
their gain in response to the previous forecast errors, but that, at the same time, consider
different models and switch among them as the performance of one of them becomes
superior. This is, however, left for future research. Moreover, learning as in this paper
might be seen as a crude way to model economic agents who are concerned about potential
changes in the model of the economy, but without having to specify the different possible
models or the number of regimes.

4Evans and Ramey (2006) also consider the optimal choice of the gain parameter.
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gap series. The model is then taken to the data to judge whether changes

in the learning process may have been a contributor to the evolution of

macroeconomic volatility in the US. The Bayesian approach used in the pa-

per facilitates the joint estimation of the learning gain coefficients together

with the structural parameters in the economy. The estimation reveals that

the endogenous gain appears to have switched to large constant gain values

for most of the 1970s and early 1980s as a consequence of larger forecast

errors by private agents in those periods. In the latest two decades, in-

stead, the agents have switched to a decreasing gain. The estimated gain

values in the 1970s are large and can justify a sizeable increase in volatility

in the period. Simulation of the model, in fact, with the parameters fixed

at the posterior mean estimates, implies that under the estimated evolving

gain, the economy would observe higher volatility in the 1960s-1970s than

later on. The magnitude of the model-implied decline in volatility roughly

matches the size of the Great Moderation.

Moreover, the paper shows that even if the economy was subject to struc-

tural shocks with constant-variance over the whole sample, a failure to in-

corporate agents’ learning in the estimation would lead econometricians to

spuriously find the existence of ARCH/GARCH effects in the model innova-

tions. The paper finally discusses how the evidence of time-varying volatility

in the innovations, as they are measured by the econometrician, may itself

be the result of monetary policy and, mainly, of the interaction between

policy and agents’ learning, and not just a matter of luck.
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2. The Model

The economy is described by the following New-Keynesian model5

πt = βÊtπt+1 + κxt + ut (2.1)

xt = Êtxt+1 − σ(it − Êtπt+1) + gt (2.2)

it = ρtit−1 + (1− ρt)(χπ,tπt−1 + χx,txt−1) + εt (2.3)

where πt denotes inflation, xt the output gap, and it the nominal inter-

est rate; ut, gt, and εt denote supply, demand, and monetary policy shocks.

Equation (2.1) represents the forward-looking New Keynesian Phillips curve

that can be derived from the optimizing behavior of monopolistically com-

petitive firms under Calvo price setting or quadratic adjustment costs in

nominal prices. Inflation depends on expected inflation in t + 1 and on

current output gap. The parameter 0 < β < 1 represents the households’

discount factor, while κ denotes the slope of the Phillips curve and is an

inverse function of the Calvo price stickiness parameter. Equation (2.2)

represents the log-linearized intertemporal Euler equation that derives from

the households’ optimal choice of consumption. The output gap depends on

the expected one-period ahead output gap and on the ex-ante real interest

rate. The coefficient σ > 0 represents the intertemporal elasticity of sub-

stitution in consumption. Equation (2.3) describes monetary policy. The

central bank follows a Taylor-type rule by adjusting its policy instrument,

a short-term nominal interest rate, in response to deviations in inflation

and the output gap. In light of McCallum’s argument that only informa-

tion up to t − 1 might be available in real-time, I assume that the central

bank cannot respond to contemporaneous variables, but it responds only to

lagged variables. The policy coefficients are allowed to vary over time and,

5See Woodford (2003) for a standard derivation.
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in particular, they differ between the pre- and post-1979 samples:6

ρt =
{

ρpre−79 t < 1979 : 03
ρpost−79 t ≥ 1979 : 03

χπ,t =
{

χπ,pre−79 t < 1979 : 03
χπ,post−79 t ≥ 1979 : 03 , χx,t =

{
χx,pre−79 t < 1979 : 03
χx,post−79 t ≥ 1979 : 03 .

The supply shock ut may arise endogenously in the model by assuming a

time-varying elasticity of substitution among differentiated goods, whereas

gt derives from shocks to preferences or technology, for example (both shocks

are assumed to evolve as AR(1) processes). The majority of the papers that

focus on the estimation of DSGE models assumes that such shocks maintain

constant variance over the whole sample (e.g. Smets and Wouters 2007, An

and Schorfheide 2007).

But recent papers have suggested that the changing volatilities of these

shocks can be important to understand macroeconomic fluctuations.

State-of-the-art DSGE models cannot endogenously generate time-varying

stochastic volatility, but they need to assume that disturbances follow a

Markow-Switching process (Laforte 2005) or exogenously assume stochas-

tic volatility (Justiniano and Primiceri 2006 and Fernandez-Villaverde and

Rubio-Ramirez 2007). This paper contributes to the literature by showing

how stochastic volatility can arise endogenously from agents’ learning about

the economy.

I relax here the assumption of rational expectations. I assume that agents

use a linear economic model to form their expectations. The agents do not

know the model coefficients and need to learn them over time. Therefore,

Êt refers to subjective expectations and may differ from the mathematical

expectations operator conditional on the true model of the economy Et.7

6I assume that a regime switch in policy occurs in 1979, when Paul Volcker begins
his term as Chairman of the Federal Reserve (August 1979). Duffy and Engle-Warnick
(2005), using nonparametric methods, similarly identify a switch in policy exactly in the
third quarter of 1979. Allowing for unknown changes in policy is beyond the scope of this
paper.

7I have assumed a simple small-scale New-Keynesian model without adding “mechan-
ical” sources of persistence as habit formation in consumption or inflation indexation;
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2.1. Learning. Economic agents need to form expectations about future

aggregate inflation rates and future output to solve their optimal consump-

tion and price-setting decisions. I assume that agents use a perceived linear

model of the economy and they need to learn the relevant coefficients. There-

fore, they behave as econometricians by estimating the model and updating

their estimates as new data become available. The agents use the following

‘Perceived Law of Motion’ (PLM):

Zt = at + btZt−1 + ηt (2.4)

where Zt ≡ [πt, xt, it]′, and at, bt are coefficient vectors and matrices of ap-

propriate dimensions. The agents’ PLM, therefore, is a simple VAR(1) in the

endogenous variables πt, xt, and it. Notice that although the true constants

in the model equal zero, agents are not endowed with this information. In

this way, they also need to learn the steady-state of the variables. The PLM

is, therefore, similar to the Minimum State Variable solution of the system

under rational expectations, but with two differences: agents do not know

the reduced-form model parameters and they cannot observe the exogenous

shocks.8 The agents learn the model coefficients according to the following

updating equations

φ̂t = φ̂t−1 + gt,yR
−1
t−1Xt(Zt −X ′

tφ̂t−1) (2.5)

Rt = Rt−1 + gt,y(Xt−1X
′
t−1 −Rt−1) (2.6)

where φ̂t = (a′t, vec(bt)′)
′ collects in a vector the coefficients, and Xt ≡

{1, Zt−1}t−1
0 is a matrix of the stacked regressors. The first line describes the

updating of the learning rule coefficients, whereas the second describes the

updating of the matrix of second moments Rt. The coefficient gt,y denotes

Milani (2006, 2007), in fact, shows that, under learning, those may become redundant
as learning is successful in inducing persistence in the model. This simplification is not
relevant for the main scope of the paper.

8That is, I assume that agents estimate VARs in the endogenous variables, rather than
VARMAs, as this is a more common practice in econometrics. It seems more realistic to
assume that agents do not observe the shocks; the results in the paper, however, do not
hinge on this assumption.
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the gain, which in the paper will be endogenously determined and time-

varying. I allow agents to learn about inflation, output, and interest rates

at different rates, letting the gain gt,y differ for y = πt, xt, it (as Branch

and Evans 2006 discuss, in fact, if the degree of structural change can be

expected to differ across series, the optimal gains should also differ).

The gain endogenously adjusts according to past forecast errors as follows

gt,y =





t−1 if
PJ

j=0(|yt−j−Et−j−1yt−j |)
J < υy

t

gy if
PJ

j=0(|yt−j−Et−j−1yt−j |)
J ≥ υy

t ,
(2.7)

where y = πt, xt, it. When the average of the past forecast errors (in absolute

value) is below a certain threshold υy
t , the agents use a decreasing gain. When

they know the correct model of the economy, with a decreasing gain they

can be expected to asymptotically converge to the Rational Expectation

Equilibrium (in this model, assuming that the shocks are observed and the

gain is always decreasing, the required conditions are derived by Bullard

and Mitra 2007). When the average of previous forecast errors is above

the threshold υt, instead, the agents become concerned that the economy

may be experiencing a structural break. In the proximity of a structural

break, a decreasing gain would be inefficient: the agents therefore switch to

a constant gain, which allows them to better track the break by assigning a

larger weight to new information. When the forecast errors fall again below

the threshold, agents switch back to a decreasing gain, which is initially

reset to 1
g−1

y +t
(rather than t−1).

The endogenous switching gain is in the spirit of the gain assumed by

Marcet and Nicolini (2003).9 I assume that the threshold υy
t is given by the

mean absolute deviation of historical forecast errors, which is recursively

9Although agents’ learning with the described endogenous gain is by no means optimal,
it can be expected to provide a fairly good approximation to the optimal forecasting
behavior of agents who are concerned about possible unknown breaks in the economy, but
who do not want to take a stand on the nature or timing of the breaks, or on the existence
or number of regimes, and assuming that the agents, in their loss function, are much more
concerned about very large forecast errors than relatively small ones.
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updated. Notice that the degrees of freedom from this mechanism are the

gain coefficients gy, the window length J for past forecast errors, as well as

υy
t . The gain will be estimated from the data, whereas J will be initially

fixed (later in the paper I will also treat J as a parameter and estimate its

value).

I assume that economic agents dispose of information only up to t − 1

when forming expectations for next period. Therefore, economic agents use

(2.4) and the updated parameter estimates in (2.5) and (2.6) to form their

expectations for t + 1 as

Êt−1Zt+1 = at−1(1 + bt−1) + b2
t−1Zt−1, (2.8)

which can be substituted in (2.1) to (2.3) to obtain the Actual Law of Motion

of the Economy (ALM).10

3. Endogenous Gain and Endogenous Time-Varying Volatility

The value of the gain coefficient affects the volatility in the economy.

In a simple empirical model of inflation and unemployment dynamics, Or-

phanides and Williams (2005, 2007), for example, have shown that the

volatility of those variables is a positive function of the gain (they consider

only gain values between 0.01 and 0.04). I simulate the model (for now with

constant, exogenously set, gain values) to show that this is also the case

here.11 Figure 2 makes clear that the standard deviations of inflation and

the output gap would increase as a function of the constant gain value.

Changes in the gain over time, therefore, may potentially be an important

determinant of the observed movements in macroeconomic volatility. To

show the potential role of the gain, I turn now to the simulation of the

10Checking E-Stability in an economy with an endogenous gain as the one presented
here is an interesting issue, which is, however, not examined in this paper.

11I fix the following values for the parameters: β = 0.99, κ = 0.05, σ = 0.1, ρ = 0.95,
χπ = 1.5, χx = 0.5, ρu = 0.9, ρg = 0.9. Agents use the MSV solution of the system to
form expectations. The economy is simulated for 1,000 periods using a grid of constant
gain values from 0 to 0.15.
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model under an endogenous gain, which is allowed to switch as described

in (2.7). Therefore, agents adopt a decreasing gain as long as their forecast

errors are ‘small’. They switch to a constant gain when those become larger

and above νt, the mean absolute deviation of past forecast errors. In the

simulation, I assume gπ = gx = 0.15. The choice of such high gain values

is, for the moment, purely for descriptive purposes and it is meant to make

the effects more striking in the graph (the value will be estimated later in

the paper).12 Figure 3 shows the time-varying endogenous gain together

with the rolling standard deviations of inflation and output gap, obtained

from a typical simulation. As the gain changes over time, the degree of

volatility in the economy also experiences large shifts. The figure displays

sizeable time variation in volatility and various episodes characterized by

volatility clustering, although the exogenous shocks had constant variance

by construction. The persistence of the volatility series and the duration

of the clusters obviously depend on the assumed window that agents use

to compute past forecast errors; by varying the window size one could in

principle mimic a wide range of changing volatility series.13 For example,

decreasing J to 500 would imply more frequent changes in volatility and

shorter clusters, as shown in the upper panels of Figure 4. The lower panels,

instead, plot the case when agents only adopt a constant gain (fixed at the

lower value of 0.05).

The next section will take the model to the data. The estimation aims

to infer the evolution of the endogenous gain from time series observations.

12I simulate the economy for 13,000 periods, allowing agents to use a window of 3,000
observations when computing the mean of past forecast errors, and discarding the first
3,000 periods. The large number of observations is again meant to make the time-varying
volatility more apparent in the graph. The parameters are: β = 0.99, κ = 0.05, σ = 0.1,
ρ = 0.95, χπ = 1.5, χx = 0.5, ρu = 0.5, ρg = 0.5.

13Allowing the gain to change in a more ‘continuous’ fashion, rather than abruptly
jumping from t−1 to g would imply more gradual movements in the volatility series. The
case of a gradually changing gain, possibly along the lines proposed by Colucci and Valori
(2004, 2005), is left for future research.
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The simulation can then be repeated in an artificial economy in which the

learning process is calibrated to resemble the one estimated from US data.

4. Bayesian Estimation

I estimate the model using likelihood-based Bayesian methods. The es-

timation follows Milani (2007), who extends the techniques reviewed in An

and Schorfheide (2007) to allow for near-rational expectations and learning.

The vector Θ collects the structural parameters of the model:

Θ = {β, κ, σ, ρt, χπ,t, χx,t, ρu, ρg, σu, σg, σε, gπ, gx, gi} (4.1)

Differently from Milani (2007), the gain coefficient is now endogenous,

being allowed to vary over time depending on the magnitude of the past

forecast errors that agents make (as made clear by expression 2.7). The gain

switches from decreasing (equal to t−1) in ‘stable’ times to constant (gy),

when past forecast errors become large and hence suggestive that a break

may be occurring. The constant gain coefficient to which agents switch is

not fixed to an ad-hoc value, rather its value is jointly estimated with the

rest of the model parameters. I use the Metropolis-Hastings algorithm to

generate 200,000 draws from the posterior distribution.14 The likelihood of

the system is evaluated at each iteration using the Kalman Filter.15 I use

quarterly US data for the 1960:I-2006:I sample in the estimation to fit the

series for inflation, output gap, and nominal interest rates.16 Data from

14I discard a burn-in of 40,000 draws. See appendix in Milani (2007) for more details
on the estimation.

15Since stochastic volatility arises endogenously from the adjustment of expectations
in the model and it is not assumed, instead, in the exogenous shocks, the estimation can
be performed using the Kalman Filter rather than the more computationally-intensive
particle filter employed in Fernandez-Villaverde and Rubio-Ramirez (2007).

16Inflation is defined as the annualized quarterly rate of change of the GDP Implicit
Price Deflator, output gap as the log difference between GDP and Potential GDP (Con-
gressional Budget Office estimate), and the federal funds rate is the measure for the
nominal interest rate. The series are obtained from FRED, the Federal Reserve Bank of
Saint Louis economic database.
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the pre-sample period 1954:III-1959:I were, instead, used to initialize the

learning algorithm.

4.1. Priors. The priors for the model coefficients are reported in Table

1. Most prior choices follow Milani (2007). To minimize the influence of

the priors on the main parameters of interest, I assume a Uniform prior

distribution in the [0, 0.3] interval for the constant gain coefficients. I assume

a dogmatic prior for β, which is fixed at 0.99, a Gamma prior for σ and κ, a

Beta prior for the autoregressive coefficients, and Normal prior distributions

for the feedback coefficients to inflation and output gap in the policy rule.

I assume for now J = 4, i.e. agents care about forecast errors over the

previous year (this restriction will be later relaxed) when deciding how much

weight to assign to more recent information. I will point out in describing

the results the situations in which the priors have important effects on the

estimates.

4.2. Empirical Results. Figure 5 shows the evolution of the forecast errors

(in absolute value) about inflation, output gap, and the federal funds rate

over the sample under the estimated learning rules. Inflation and output

were typically harder to predict during the 1970s and until the early 1980s.

The forecast errors for both inflation and output gap were on average lower

in the 1990s. Monetary policy, instead, was harder to forecast in the late

1960s, in most of the 1970s, and during Volcker’s disinflation.17 Figure 6

shows the episodes in which the rolling means of the absolute forecast errors

exceed the updated values of νy
t , which imply switches to learning with a

constant gain.

Table 2 presents the parameter estimates. The value of the constant gain

to which private agents switch when their forecast errors are above threshold

is estimated equal to 0.082 for inflation and to 0.073 for output (a very low

17Best and Milani (2007) study more in detail private agents’ expectations and learning
about future monetary policies using post-war US data.
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gain coefficient is, instead, found for the interest rate equation). Those

values are substantially larger than the estimates in Milani (2007), but of

course here they refer only to particular periods in the sample.18 It appears,

therefore, that agents, on average, adopt low gain coefficients, but they

switch to considerably higher gains in periods of instability. Figure 7 plots

the evolution of the time-varying gain coefficients estimated for inflation

and the output gap.19 The learning process for inflation often switches

to a constant gain in the 1970s until the early 1980s and it reverts to a

decreasing gain shortly after 1985 and for most of the latest part of the

sample. Learning about the output gap is also characterized by frequent

switches to a constant gain from the 1960s until 1985, and by a decreasing

gain for most of the recent two decades (only two switches are identified

from 1985 to 2006).

Turning to the other parameters, I estimate σ−1 = 5.92 and κ = 0.022.

The posterior means for the monetary policy rule coefficients indicate a more

aggressive response to inflation and a less active response towards the out-

put gap in the second part of the sample than in the first (χπ goes from 1.37

to 1.53, and χx declines from 0.58 to 0.48). The estimated monetary policy

rules satisfy the Taylor principle in both sub-samples (a similar result in a

model with learning is found in Milani 2006). The posterior distributions

for the policy rule parameters, however, are not far from the assumed prior

distributions, indicating that the data are, therefore, not very informative

about these parameters. The data appear informative, instead, on the val-

ues of the gain coefficients. Although Uniform priors were assumed, the

18The larger gain for inflation than output is consistent with results in Branch and
Evans (2007) and Milani (2006, 2007).

19I focus in this paper on inflation and output gap. I do not try, instead, to explain the
time-varying volatility in the Taylor rule equation with learning. The estimated higher
volatility of monetary policy shocks in some sub-periods can be more realistically attrib-
uted to misspecification of the Taylor rule in the 1979-1982 years and in few other episodes
in the 1970s than to a time-varying gain story.
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estimation identifies the gains that imply the best fit of the data (Figure 10

shows their posterior distributions).

4.3. Robustness. The results might depend on the particular choice of the

number of observations J (in expression 2.7) that agents are assumed to

use when computing the average of recent forecast errors. To check for

robustness, I repeat the estimation using a longer window, i.e. J = 20

(now agents compute the mean absolute forecast errors over the past five

years). The estimates are reported in table 3. Figure 8 shows the evolution

of the endogenous gain coefficients in this case. The estimated gains equal

0.065 for inflation and 0.064 for output gap. The other estimates are not

substantially different.

The window for the mean forecast errors can also be interpreted as a

parameter that can be estimated from data. Table 4 reports the results

when the estimation is repeated treating J as a free parameter. A gamma

distribution with mean 12 and standard deviation 4.9 is assumed as prior

for J . The estimated posterior mean is 4 (in the estimation, J is rounded

to the closest integer, since agents need to use the previous J periods as

described in 2.7), implying that agents care about forecast errors over the

previous year (the time-varying gains are therefore similar to those shown

in Figure 7). Overall, the results are not too sensitive to the choice of J .

The finding of frequent switches to a constant gain coefficient in the 1970s is

especially robust to the different J ’s. Switches to constant gain in the later

part of the sample, instead, are more sensitive to its choice.

Since agents are unsure about the model of the economy and whether this

is changing over time, one might argue that agents may be better off always

using constant-gain learning, rather than reverting to a decreasing gain when

their forecasting performance is satisfactory. I follow this argument here and

assume that agents always adopt constant-gain learning, only switching from

a ‘low’ to a ‘high’ gain when the conditions in (2.7) are met (the ‘low’ gain
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is fixed at 0.02, whereas the ‘high’ gain is estimated). The estimates are

reported in table 5. The switches to the higher gain occur in similar periods

to those found under the baseline case (see Figure 9); the estimated gains

equal 0.096 for inflation and 0.042 for the output gap.

5. Simulation

I repeat the simulation of the model, but now using the estimated pa-

rameter values (shown in Table 2) from the previous section and fixing the

agents’ learning to resemble the one estimated from US data (i.e, assuming

that the endogenous gain switches as in Figure 7). I simulate an econ-

omy with 185 periods (the same length as the estimated New Keynesian

model) for 10,000 times. The shocks that hit the economy are drawn from

distributions with constant variance over the whole sample.20 We have pre-

viously seen that learning can imply time-varying volatility in the variables

about which agents are forming expectations. But suppose that learning

is neglected in an empirical exercise. Let’s consider the following experi-

ment. Suppose that an econometrician would estimate inflation and output

equations on the simulated data, but without taking learning into account.

Would the econometrician find evidence of time-varying volatility, even if

the true data-generating process had shocks with constant variance through

the whole sample?

To answer this question, I regress artificially-generated inflation and out-

put gap series on a constant and their first lag (a similar regression on

actual data gives the plot for conditional standard deviations in Figure 1);

then I take the implied residuals and perform a test on the existence of

20I use a ‘projection facility’ in the simulation to ensure that the economy does not
become unstable. As in Orphanides and Williams (2005, 2007), in fact, I assume that
agents recognize that the economy is stable and every time the matrix of autoregressive
coefficients in their VAR has an eigenvalue larger than 1 in absolute value, they do not

update their estimates, keeping bφt = bφt−1 and Rt = Rt−1. If this is not enough to
guarantee non-explosive dynamics, I reject the specific draw.
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ARCH/GARCH effects (at the 5% significance level).21 Table 6 reports the

percentages of rejections of the null hypothesis of no ARCH/GARCH effects

from simulated data. In the case that the data derive from an economy with

no learning (i.e., imposing gt,y = 0 at all times), the test rejects the null of no

ARCH effects only about 5% of the times. In the case with learning, even

though the variances of the shocks are constant by construction, the test

concludes that ARCH/GARCH effects are a feature of the data in 52% of

the cases for inflation and 78% for output gap (see Table 6 for more results

under different cases).22

These results are suggestive that estimations that abstract from agents’

learning can significantly overestimate the time variation in the volatility of

exogenous shocks.23

5.1. Time-Varying Volatility. The model can generate time-varying volatil-

ity in macroeconomic variables even if the exogenous disturbances have

maintained constant variance over the whole sample. I try to verify whether

the model can generate a pattern of volatility that roughly resembles what

is observed in actual data. That is, I aim to verify whether the outcomes

from the simulations imply volatility series that increase in the first part

of the sample (when the endogenous gain switches to constant) and decline

in the second part (when the endogenous gain reverts to decreasing). In

21To test for evidence of ARCH(q) effects against the hypothesis of no ARCH effects,
the squared residuals are regressed on a constant and q lagged values and the statistic
χ2 = TR2 is computed. Under the null hypothesis of no ARCH effects this statistic has
a limiting chi-square distribution with q degrees of freedom. The test for GARCH(p, q) is
equivalent to a test for ARCH(p + q).

22A more sophisticated version of the same experiment would imply estimating the full
DSGE model under Rational Expectations, hence disregarding learning dynamics, to test
for the existence of spurious ARCH effects or stochastic volatility in the exogenous shocks.
This is, however, beyond the scope of this paper.

23A similar point, albeit in a largely different contexts, is reached by Bullard and Singh
(2007), who find that learning about different regimes may have had a role for the “Great
Moderation”: they conclude that 30% of the decline in variance may be due to learning,
rather than pure good luck.



LEARNING AND TIME-VARYING MACROECONOMIC VOLATILITY 17

each simulation, I take the residuals from the inflation and output equa-

tions and I look at the point in the sample in correspondence of which the

maximum rolling standard deviation is obtained (using a rolling window of

20 periods). I then estimate the Kernel density of the maxima across all

simulations. Figure 11 displays the results. The standard deviations often

increase near those observations that would correspond to the late 1960s and

1970s, and become typically lower in the second part of the sample. If the

economy was simulated without learning, instead, one would find that the

maxima of the volatility series are uniformly spread across all observations

in the sample.

Therefore, as in the previous section, neglecting learning in empirical

work, if learning is a feature of the data-generating process of the econ-

omy, may lead researchers to spuriously find time variation in the volatility

of residuals from estimated univariate equations (or possibly of exogenous

shocks in DSGE models under RE). The pattern of volatility is in the ball-

park of that estimated on actual data and reported in Figure 1. One would,

in fact, conclude that the volatility of shocks has increased in periods in

which agents’ forecast errors are generally large and in which learning intro-

duces more noise in the economy.

The estimated model, however, is still unlikely to match the magnitude

and exact timing of the changes that we observe in Figure 1. Taking more

seriously the model to the data to judge what fraction of the decline in

volatility can be explained by learning (that is, what fraction of the decline

in exogenous volatility is removed if we allow for endogenous stochastic

volatility from learning) is an important topic that I leave for future work.

5.2. The Great Moderation. The model estimation has shown that the

gain coefficients were typically larger in the 1960s and 1970s than in the fol-

lowing decades, and this has affected the degree of volatility in the economy.

The volatility of output gap and inflation has fallen in the post-1984 sample.
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Is the model with learning able to generate the Great Moderation? For each

simulation, I compute the ratio of the standard deviations of inflation and

output gap in the second part of the sample (corresponding to 1985-2006

observations) versus the first part (which correspond to 1960-1984). Taking

the median from the simulations, for the baseline model, the ratios between

post-1984 and pre-1984 standard deviations equal 0.39 for inflation (versus

0.35 on actual data) and 0.42 for output gap (versus 0.50 on actual data).

The model with learning, with parameters fixed at their posterior mean

estimates, is, therefore, in principle capable of endogenously generating a

reduction in the volatility of the main macroeconomic variables of a magni-

tude comparable to the Great Moderation (Table 7 shows that the results

remain similar under the other cases).

5.3. The Effects of Policy. The literature that studies the main sources

of the Great Moderation has often focused on testing explanations based

on changes in monetary policy versus explanations based on reductions in

the volatility of the exogenous shocks that hit the economy. A decline in

the estimated volatility of shocks is usually taken as evidence in favor of the

bad luck-good luck hypothesis versus the alternative hypothesis of transition

from bad to good policy.

Changes in volatility, however, may not be unrelated to the monetary

policy regime. Chairman Bernanke, in a speech about the Great Moderation

in February 2004, for example, argued

[I am not convinced that the decline in macroeconomic volatility of the past two
decades was primarily the result of good luck.]

[...changes in monetary policy could conceivably affect the size and frequency
of shocks hitting the economy, at least as an econometrician would measure those
shocks]

He continues:

[ changes in inflation expectations, which are ultimately the product of the mone-
tary policy regime, can also be confused with truly exogenous shocks in conventional
econometric analyses. ]
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Therefore,

[some of the effects of improved monetary policies may have been misidentified as
exogenous changes in economic structure or in the distribution of economic shocks.]

This paper makes time-varying volatility endogenous. In this way, it is

easier to study how the volatility of the shocks (as they are measured by the

econometrician) may itself depend on policy. This section can, therefore,

provide an initial evaluation of the extent to which changes in the volatility

of inferred economic shocks may, as in Bernanke’s claims, simply reflect

better monetary policies.

To examine the interaction between volatility and monetary policy, I sim-

ulate the economy with an endogenous gain as in section 3, but now under a

wide range of policy feedback coefficients to inflation (using a grid from 0 to 5

in 0.5 increments). Figure 12 shows the result under the model parametriza-

tion obtained in table 2. A more aggressive monetary policy reduces agents’

forecast errors and, therefore, it affects the frequency of switches in their

gain coefficients (from almost 70% of the times when χπ = 0 to less than

30% when χπ = 5, with an average gain in the sample that goes from above

0.07 to below 0.05), and, through this channel, it affects also changes in

volatility in the economy.24 The more aggressive monetary policy, the less

often the econometrician would spuriously find time-varying volatility in the

reduced-form residuals (from more than 80 to 55% of the times). Changes

in the volatility of estimated shocks, therefore, may not in principle be a

matter of luck after all, but an implication of better policy (notice, however,

that under the estimated coefficients in this paper, large changes in volatility

due to policy changes are unlikely).25

This result echoes, although in a different setting and with a different

focus, the argument in a recent paper by Benati and Surico (2007). They

24The importance of monetary policy in reducing agents’ forecast errors is also discussed
in Orphanides and Williams (2003).

25A more detailed analysis of this channel, however, is certainly needed.
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artificially generate data from a New Keynesian model assuming a policy

change from a ‘passive’ to an ‘active’ policy rule and they ask whether a

common VAR estimation would be able to recover the change in policy.

They show that the estimated VAR would lead researchers to inaccurately

conclude that the variances of the shocks have changed, but not the policy

coefficients.

This paper’s results similarly suggest caution: simply finding that the

variances have changed from reduced-form regressions may not necessarily

imply changes in luck, but it might be an effect of policy changes or, as in

this paper, of the interaction between changing policies and private agents’

learning.

6. Conclusions and Future Directions

The paper has presented a New Keynesian model in which agents’ learn-

ing with a switching gain coefficient endogenously generates time-varying

volatility in the economy. The estimation of the model has shown that

there is evidence of large changes in the gain over the post-war US sample.

The changes in the gain can imply important changes in macroeconomic

volatility, which can roughly match the magnitude of the Great Modera-

tion. An econometrician that would abstract from such learning dynamics,

however, would be lead to overestimate the importance of changes in the

volatility of exogenous shocks. Moreover, time variation in volatility may

not be simply a matter of luck, but it may itself be affected by changes in

monetary policy and, in particular, it can stem from the interaction between

policy and learning by private agents.

A more ambitious scope for future research will be to test whether exten-

sions of the model would be able to generate endogenous stochastic volatil-

ity series able to match those estimated in DGSE models by Justiniano

and Primiceri (2006) and Fernandez-Villaverde and Rubio-Ramirez (2007).
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More generally, this would allow to test what fraction of the changes in

volatility may be due to learning, rather than to the decline in the volatility

of exogenous disturbances.

Finally, the model can similarly be used to study the formation of expec-

tations and learning in emerging market economies. Their bigger instability

is likely to imply large forecast errors by private agents and probably learn-

ing with a higher constant gain than the one estimated here, which may

help to explain part of the large changes in volatility over time in these

economies.
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Prior Distribution
Description Param. Range Distr. Mean 95% Int.

Inverse IES σ−1 R+ G 1 [.12, 2.78]
Slope PC κ R+ G .25 [.03, .7]
Discount Rate β .99 − .99 −
Interest-Rate Smooth ρpre79 [0, 1] B .8 [.46, .99]
Feedback to Infl. χπ,pre79 R N 1.5 [.51, 2.48]
Feedback to Output χx,pre79 R N .5 [.01, .99]
Interest-Rate Smooth ρpost79 [0, 1] B .8 [.46, .99]
Feedback to Infl. χπ,post79 R N 1.5 [.51, 2.48]
Feedback to Output χx,post79 R N .5 [.01, .99]
Std. MP shock σε R+ IG 1 [.34, 2.81]
Std. gt σg R+ IG 1 [.34, 2.81]
Std. ut σu R+ IG 1 [.34, 2.81]
Constant Gain infl. gπ [0, 0.3] U .15 [.007, .294]
Constant Gain gap gx [0, 0.3] U .15 [.007, .294]
Constant Gain FFR gi [0, 0.3] U .15 [.007, .294]

Table 1 - Prior Distributions.
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Posterior Distribution
Description Parameter Mean 95% Post. Prob. Int.
Inverse IES σ−1 5.92 [4.23-8.34]
Slope PC κ 0.022 [0.003-0.06]
Discount Factor β 0.99 -
IRS pre-79 ρpre79 0.938 [0.85-0.99]
Feedback Infl. pre79 χπ,pre−79 1.37 [0.87-1.89]
Feedback Gap pre79 χx,pre−79 0.58 [0.18-1.02]
IRS post-79 ρpost79 0.93 [0.88-0.97]
Feedback Infl. post79 χπ,post−79 1.53 [1.05-2.05]
Feedback Gap post79 χx,post−79 0.48 [0.04-0.92]
Autoregr. Cost-push shock ρu 0.40 [0.28-0.52]
Autoregr. Demand shock ρg 0.84 [0.75-0.92]
Std. Cost-push shock σu 0.89 [0.8-1.00]
Std. Demand shock σg 0.65 [0.58-0.72]
Std. MP shock σε 0.97 [0.87-1.07]
Constant gain (Infl.) gπ 0.082 [0.07-0.09]
Decreasing gain (Infl.) t−1 - -
Constant gain (Gap) gx 0.073 [0.06-0.083]
Decreasing gain (Gap) t−1 - -
Constant gain (FFR) gi 0.001 [0,0.01]
Decreasing gain (FFR) t−1 - -

Table 2 - Posterior Distributions: baseline case with J = 4.
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Posterior Distribution
Description Parameter Mean 95% Post. Prob. Int.
Inverse IES σ−1 6.89 [4.62,10]
Slope PC κ 0.02 [0.003,0.06]
Discount Factor β 0.99 -
IRS pre-79 ρpre79 0.936 [0.86-0.99]
Feedback Infl. pre79 χπ,pre−79 1.31 [0.91-1.76]
Feedback Gap pre79 χx,pre−79 0.61 [0.13-0.98]
IRS post-79 ρpost79 0.914 [0.86-0.96]
Feedback Infl. post79 χπ,post−79 1.54 [1.09-1.93]
Feedback Gap post79 χx,post−79 0.41 [0.006-0.87]
Autoregr. Cost-push shock ρu 0.39 [0.26-0.5]
Autoregr. Demand shock ρg 0.83 [0.74-0.91]
Std. Cost-push shock σu 0.97 [0.87-1.07]
Std. Demand shock σg 0.67 [0.61-0.75]
Std. MP shock σε 0.96 [0.87-1.07]
Constant gain (Infl.) gπ 0.065 [0.055-0.075]
Decreasing gain (Infl.) t−1 - -
Constant gain (Gap) gx 0.064 [0.049-0.072]
Decreasing gain (Gap) t−1 - -
Constant gain (FFR) gi 0.005 [0,0.032]
Decreasing gain (FFR) t−1 - -

Table 3 - Posterior Distributions: Alternative case with J (J = 20).
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Posterior Distribution
Description Parameter Mean 95% Post. Prob. Int.
Inverse IES σ−1 6.37 [4.43,9.13]
Slope PC κ 0.02 [0.003,0.054]
Discount Factor β 0.99 -
IRS pre-79 ρpre79 0.94 [0.87-0.99]
Feedback Infl. pre79 χπ,pre−79 1.37 [0.91-1.82]
Feedback Gap pre79 χx,pre−79 0.63 [0.26-1.11]
IRS post-79 ρpost79 0.93 [0.88-0.97]
Feedback Infl. post79 χπ,post−79 1.57 [1.04-2.04]
Feedback Gap post79 χx,post−79 0.49 [0.04-0.88]
Autoregr. Cost-push shock ρu 0.402 [0.28-0.52]
Autoregr. Demand shock ρg 0.83 [0.73-0.92]
Std. Cost-push shock σu 0.90 [0.81-0.99]
Std. Demand shock σg 0.64 [0.58-0.71]
Std. MP shock σε 0.97 [0.87-1.07]
Constant gain (Infl.) gπ 0.078 [0.062-0.097]
Decreasing gain (Infl.) t−1 - -
Constant gain (Gap) gx 0.073 [0.06-0.084]
Decreasing gain (Gap) t−1 - -
Constant gain (FFR) gi 0.001 [0,0.01]
Decreasing gain (FFR) t−1 - -
Forecast Errors Window J 4 [1,6]

Table 4 - Posterior Distributions: Alternative case with estimated Ĵ .
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Posterior Distribution
Description Parameter Mean 95% Post. Prob. Int.
Inverse IES σ−1 7.44 [5.22-10.34]
Slope PC κ 0.025 [0.003-0.07]
Discount Factor β 0.99 -
IRS pre-79 ρpre79 0.932 [0.856-0.99]
Feedback Infl. pre79 χπ,pre−79 1.33 [0.86-1.82]
Feedback Gap pre79 χx,pre−79 0.62 [0.22-1]
IRS post-79 ρpost79 0.91 [0.86-0.96]
Feedback Infl. post79 χπ,post−79 1.56 [1.1-2.02]
Feedback Gap post79 χx,post−79 0.44 [-0.04-0.85]
Autoregr. Cost-push shock ρu 0.31 [0.18-0.46]
Autoregr. Demand shock ρg 0.79 [0.7-0.87]
Std. Cost-push shock σu 0.91 [0.82-1.01]
Std. Demand shock σg 0.74 [0.66-0.82]
Std. MP shock σε 0.96 [0.87-1.07]
High Constant gain (Infl.) gH

π 0.096 [0.09-0.104]
Low Constant gain (Infl.) gL

π 0.02 -
High Constant gain (Gap) gH

x 0.042 [0.036-0.052]
Low Constant gain (Gap) gL

x 0.02 -
Constant gain (FFR) gi 0.01 -

Table 5 - Posterior Distributions: constant-gain learning (‘low’ and ‘high’
constant gains).



28 FABIO MILANI

Endogenous TV Gain No Learning
J = 4 J = 20

ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1)
Inflation 0.517 0.61 0.48 0.56 0.05 0.06

Output Gap 0.785 0.89 0.85 0.90 0.045 0.05

Table 6 - Test for the existence of ARCH/GARCH effects (5% significance): proportion
of rejections of the null hypothesis of no ARCH/GARCH effects.
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Endogenous TV Gain No Learning Data
Baseline J = 20 CG

Ratio Std. Infl. 1985−2006
Std. Infl. 1960−1984 0.39 0.42 0.43 1.00 0.35

Ratio (Std. OutputGap 1985−2006)
(Std. Output Gap 1960−1984) 0.42 0.52 0.54 1.00 0.50

Table 7 - The Great Moderation: ratio of standard deviations for inflation
and output gap in the second versus the first part of the simulated samples
(median across simulations).
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Figure 1. Conditional Standard Deviation series for Infla-
tion and Output Gap
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Figure 2. Volatility of simulated Inflation and Output Gap
as a function of the constant gain coefficient.
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Figure 3. Time-Varying Volatility with Time-Varying En-
dogenous Gain Coefficient.
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Figure 4. Time-Varying Volatility: Additional Cases.

Upper Plots: Time-Varying Endogenous Gain with J = 500 and g = 0.15.
Lower Plots: Constant Gain with g = 0.05.



34 FABIO MILANI

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

1

2

3

4
Forecast Errors Inflation

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

1

2

3

4
Forecast Errors Output Gap

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0

5

10
Forecast Errors FFR

Figure 5. Forecast errors for inflation, output gap, and fed-
eral funds rate (absolute values).
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Figure 6. Rolling Mean Absolute Forecast errors vs. Up-
dated νt for inflation, output gap, and federal funds rate se-
ries.
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Figure 7. Endogenous Time-Varying Gain Coefficients (es-
timated constant gain). Baseline Case
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Figure 8. Endogenous Time-Varying Gain Coefficients (es-
timated constant gain). Case with J = 20
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Figure 9. Endogenous Time-Varying Gain Coefficients
(Case with low and high constant gain coefficients only).
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Figure 10. Constant Gain Coefficients: Prior and Posterior Distributions.
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Figure 11. Kernel Density Estimation: sample observation
in correspondence of which the Maximum Rolling Standard
Deviation of residuals in the sample is obtained, across sim-
ulations.
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Figure 12. Effects of Monetary Policy on Volatility (Simu-
lation under estimated parameters).

Graph 1: Fraction of sample periods in which agents’ learning switches to constant gain
as function of policy feedback to inflation χπ; Graph 2: Average gain in the sample as
function of policy feedback to inflation χπ; Graph 3: Percentage of rejections of the null
of no ARCH effects on the residuals as function of policy feedback to inflation χπ.


