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Abstract

Bayesian inference in moment condition models is difficult to implement. For these

models, a posterior distribution cannot be calculated because the likelihood function

has not been fully specified. In this paper, we obtain a class of likelihoods by formal

Bayesian calculations that take into account the semiparametric nature of the problem.

The likelihoods are derived by integrating out the nuisance parameters with respect to

a maximum entropy tilted prior on the space of distribution. The result is a unification

that uncovers a mapping between priors and likelihood functions. We show that there

exist priors such that the likelihoods are closely connected to Generalized Empirical

Likelihood (GEL) methods.

Keywords: Moment condition, GMM, GEL, Likelihood functions, Approximate Bayesian

inference.
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1 Introduction

A typical Bayesian model is composed of a parametric likelihood function and a prior distri-

bution on the parameters. Bayes’ theorem then actualizes the information on the parameters

by using the data. In practical situations, however, one may be unwilling or unable to spec-

ify a fully parametric likelihood. For example, a researcher’s interest may be in an economic

theory that makes weak structural predictions or robustness concerns may discourage a

committment to a particular parametric form.

This paper investigates the viability of conducting Bayesian inference when the only

information linking the parameters and the data is in the form of moment restrictions.

We propose a way of obtaining likelihoods in moment condition models by using formal

Bayesian calculations. The basic idea is to simplify the problem by making nonparametric

assumptions on the set of distributions supported by the moment condition. An initial prior

is attached to the space of distributions and is then tilted to make it satisfy the moment

condition. The tilted prior minimizes the Kullback-Leibler divergence between the initial

prior and all the distributions supported by the model. The tilted distribution is then used

to integrate out the nuisance parameters, which in this context are multinomial weights.

We show that there is a mapping between the initial priors and the resulting likeli-

hoods. There exist prior distributions such that the likelihoods are related to Generalized

Empirical Likelihood (GEL) methods (Newey and Smith, 2004). GEL is a generalization of

the empirical likelihood (EL) (Qin and Lawless, 1994; Imbens, 1997) and exponential tilting

(ET) (Kitamura and Stutzer, 1997). A feature of GEL is that it provides semiparametric

efficient estimators of the cumulative distribution function (c.d.f.) of the data under the

set of moment restrictions (Brown and Newey, 2002). It is fitting that there exist priors

such that resulting likelihoods from our approach are functionally related to these estima-

tors. These likelihoods are the product of the GEL weights that define the semiparametric

efficient estimator of the c.d.f.

There is recent literature on Bayesian inference in semiparametric models that is related

to our work. Lazar (2003) considers using the product of the EL weights as a likelihood in

the posterior distribution. Schennach (2005) obtains an integrated likelihood by an asymp-

totic procedure in which the nuisance parameters grow to infinity. Schennach’s likelihood is

related to a member of the GEL class: it is the product of the ET weights. The method dis-
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cussed in this paper provides a probabilistic justification for the approach in Lazar (2003) and

it extends Schennach (2005) by showing that Bayesian likelihoods can also be constructed

from other members of the GEL class.

The approach of Chamberlain and Imbens (2003) is also related to our work, which in-

cludes extending the Bayesian bootstrap (BB) of Rubin (1981) to moment condition models.

Our approach and the approach of Chamberlain and Imbens (2003) share the same set of

nonparametric assumptions. In particular, in both cases the model is restricted to discrete

random variables whose support is assumed to be fully observed in the data. However,

while the Bayesian bootstrap obtains samples from the posterior distribution by assuming

an improper Dirichlet prior on the parameters of the multinomial distribution, we obtain a

posterior by integrating out the parameters of the multinomial with respect to a prior that

carries information contained in the model.

As noted by Sims (2002), if moment condition models are going to be used in real decision

making, classical confidence bands for parameters are going to be interpreted as posterior

probability credible regions. It is therefore important to know under which assumptions the

use of semiparametric likelihoods gives valid Bayesian inference. This paper sheds some light

on this issue by showing explicitly what class of priors on the nuisance parameters supports

the use of GEL-based likelihoods in Bayesian inference.

The effect of the nonparametric assumptions on the resulting inference could be a con-

cern. This issue is addressed by investigating whether credible regions based on posteriors

that use semiparametric likelihoods have correct coverage. We explore coverage properties

in two simple settings. The first is concerned with the estimation of quantiles of a continuous

distribution. This example shows that when the moment condition is bounded the choice of

the prior for the nuisance parameters is immaterial: all the semiparametric likelihoods lead

to the same Bayesian inference. The second example is an overidentified location problem.

In this case there are differences both in the inference and in the coverage of the likelihoods.

We find that semiparametric likelihoods give valid Bayesian inference for reasonable sample

sizes. One exception is the case of the likelihood obtained by eliciting a normal initial prior

on the multinomial probabilities. In this case, the likelihood corresponds to the product of

the weights of the continuous updating (CUE). This suggests that the elicitation of the ini-

tial prior for the nuisance parameters may have a larger effect on the validity of the inference
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than the nonparametric assumptions.

This paper can also be interpreted as an attempt to reconcile classical and Bayesian

estimation of parameters specified through a moment condition. Chernozhukov and Hong

(2003) develop an asymptotic theory for estimators defined as means and quantiles of quasi-

posteriors based on statistical criterion functions. Their analysis can be extended to the

likelihoods obtained here. The resulting inference could then be interpreted from a Bayesian

or a classical perspective depending on the objective of the analysis. Ragusa (2006a) analyzes

the frequentist properties of the semiparametric likelihoods and studies their performance

both in Monte Carlo experiments and in real applications.

The remainder of the paper proceeds as follows. Section 2 formally defines the moment

condition models, introduces the basic notation, and briefly reviews the literature. Section

3 develops the Bayesian calculations and derive the semiparametric likelihoods. Section 4

establishes the relationship between the likelihoods of Section 3 and GEL methods. Section

5 explores the Bayesian coverage validity of the nonparametric likelihoods. Finally, Section

6 concludes and points to future work.

2 Model and motivations

The model we consider is for iid observations where there is a countable number of moment

restrictions. To describe the model, let xi(i = 1, . . . , n) be i.i.d. observations on a random

vector x. Also, let β be a p × 1 parameter vector and g(x, β) = (g1(x, β), . . . , gm(x, β))′

an m × 1 vector of functions of x and the parameter vector, where m ≥ p. At the true

parameter vector, β0, the model satisfies the moment condition

∫

g(x, β0)dF (x) = 0 (1)

where F (x) denotes the distribution of x. The moment equation (1) is implied by a condi-

tional restriction and in general most models considered in econometrics fit this framework.

Classical inference proceeds by applying the efficient GMM procedure to obtain consis-

tent estimators of β and then constructing statistics based on the large sample distribution

of the estimator. To describe this procedure, let gi(β) = g(xi, β), ḡ(β) =
∑n

i=1 gi(xi, β)/n

4



and Ω̄(β) =
∑n

i=1 g(xi, β)g(xi, θ)′/n. The efficient two-step GMM estimator is given by

β̂GMM = arg min
β∈B

J(β; β̄), J(β; β̄) = nḡ(β)′W̄ ḡ(β), W̄ = Ω̄(β)−1,

where β̄ is a preliminary consistent estimate of β and B is a compact set of parameter values.

In a wide array of settings,
√

n(β̂GMM−β0) = Op(1) with asymptotically normal distribution

and, under the model, J(β̂GMM ) = Op(1) with χ2
m−p asymptotic calibration, where J(β) ≡

J(β;β) (Hansen, 1982; Newey and McFadden, 1994; Gallant and White, 1988).

To describe a GEL procedure let ρ(υ) be a function of a scalar υ that is convex on

an open interval V containing zero. A GEL estimator for the parameter β defined by the

moment condition(1) is given by

β̂GEL = arg max
β∈B

n
∑

i=1

ρ(τ(β)′gi(β))/n, τ(β) = arg min
t∈T (β)

n
∑

i=1

ρ(t′gi(β)), T (β) = {t : t′gi(β) ∈ V}.

The empirical likelihood estimator is obtained when ρ(υ) = − log(1−υ), exponential tilting

when ρ(υ) = exp(υ) − 1, and the continuous updating estimator when ρ(υ) = υ + υ2/2.

The GEL estimator has some interesting frequentist properties (see Newey and Smith,

2004 and Ragusa, 2006b). Central to the understanding of the results of this paper is

the fact that the GEL procedure delivers efficient estimators of the c.d.f. of x under the

moment condition. This class of estimators is defined as F̂ (x) =
∑

1(xi ≤ x)ϕi where

ϕi = ρ1(τ
′gi(β))/

∑n
i=1 ρ1(τ

′gi(β)), ρ1(υ) = ∂ρ(υ)/∂υ can be interpreted as the estimated

probability of the observations xi under the model.

Fully Bayesian approaches to inference in semiparametric models boil down to finding an

approximate likelihood consistent with the model under consideration and with the Bayesian

learning mechanism. Mixed approaches try to justify the use of common criterion functions,

such as J(·, ·), as a central strategy for obtaining a Bayesian likelihood.

Chamberlain and Imbens (2003) extend to semiparametric models the Bayesian boot-

strap (Rubin, 1981).1 In moment condition models, Bayesian bootstrap consists of solving

a weighted version of the sample moment equation where the weights are sets of i.i.d. ex-

1Bayesian bootstrap in nonparametric settings has been considered by Ferguson (1973, 1974) and
Gasparini (1995). Hahn (1997) studies the frequentist properties of the BB for the quantile regression
case and Lancaster (1994) applies BB to the analysis of choice based sampling.
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ponential random variables V
(s)
i (i = 1, . . . , n):

n
∑

i=1

V
(s)
i g(xi, β

(s)) = 0, (l = 1, . . . , S).

The procedure gives S independent draws from a posterior distribution obtained by assuming

(an improper) Dirichlet prior on the space of distributions. There are two main problems

with this approach. First, it is not clear how to incorporate prior knowledge about β. The

prior on β is implicitly elicited by the choice of the Dirichlet prior. Second, drawings are

obtained by solving a potentially high-dimensional nonlinear set of equations. When m > p,

one needs to augment the parameter vector and the moment functions. This augmentation

takes place outside the model and hence the resulting inference is arbitrary.

For an alternative likelihood function in Bayes’ theorem, Kim (2002) proposes using

a transformation of the efficient GMM objective function, namely exp {−J(β)/2}. This

procedure is only justified asymptotically and is not based on formal Bayesian calculus.

Lazar (2003) proposes replacing the likelihood in the formula for the posterior with the

empirical likelihood

L(x|β) =

{

max
π

n
∏

i=1

πi, subject to

n
∑

i=1

πig(xi, β) = 0;

n
∑

i=1

πi = 1

}

.

A theoretical obstacle for using EL is that the nuisance parameters πi (i = 1, . . . , n) are

maximized over, giving an estimated likelihood. Even if estimated likelihoods have been used

to approximate marginal likelihoods, there is no reason to expect that a profiled likelihood

will behave like a marginal likelihood. A proper and fully Bayesian approach would require

eliciting a prior distribution for π conditional on β and integrating out π with respect to

this prior to obtain a marginal posterior.

Schennach (2005) recognizes the theoretical limitations of EL-based likelihoods and suc-

cessfully seeks remedies by adopting a formal Bayesian procedure in which the nuisance

parameters are assumed to grow to infinity. The procedure obtains the Bayesian Exponen-

tially Tilted Empirical Likelihood (BETEL), defined as:

L(x|β) =
n
∏

i=1

exp(τ ′gi(β))
∑n

i=1 exp(τ ′gi(β))
, τ = arg min

t

n
∑

i=1

exp(t′gi(β)).
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As opposed to Schennach (2005) in this paper we do not require the nuisance parameters

to grow to infinity. Rather nonparametric assumptions are made on the support of the

distribution. These assumptions greatly simplify the problem and deliver a transparent and

intuitive derivation of a class of likelihoods that are consistent with Bayesian calculus. As

shown in the next section, these likelihoods are connected with EL, ET, and, in general,

with GEL methods.

3 Bayesian Likelihood

The analysis assumes that the distribution of the random vector x belongs to Fθ = {Fθ :

θ ∈ Θ}, the class of discrete distributions. The distributions Fθ have finite support, Pr(x =

aj) = θj, (j = 1, . . . , J), where θj is the jth element of θ ∈ Θ and Θ is the unit simplex

in RJ . In the Bayesian bootstrap, the discreteness of x is a property of the posterior

distribution.2 In the present setting, the restriction to the class of discrete distributions is

made for convenience. Since J can be large and all data are observed discretely, assuming

discreetness is no real restriction (Rubin, 1981 page 133).

When the model is restricted to Fθ, the moment condition can be rewritten as

J
∑

j=1

g(aj , β0)θj = 0.

Let nj =
∑n

i=1 1(xi = aj) be the number of sample observations equal to aj . The likelihood

of x = (x1, . . . , xn) can then be written as

L(x|β) =

J
∏

j=1

θ
nj

j .

The weights θj (j = 1, . . . , J) can be apportioned into observation-specific weights ωi > 0

(i = 1, . . . , n) by requiring that the sum of the ωi for all the observations equal to aj is θj.

Formally, the ωi (i = 1, . . . , n) are implicitly defined by J equations: θj =
∑n

i=1 1(xi = aj)ωi.

These equations do not pin down a unique value for the ωi, as there are many ways to assign

values to ωi and still satisfy the J equations. Let θj(i) be the probability attached by Fθ to

2 A draw from a Dirichlet process is a distribution that places its probability mass on a countably infinite
subset of the underlying sample space.
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the support point aj that corresponds to observation i, θj(i) = 1(xi = aj) Pr(x = aj), and let

nj(i) =
∑J

j=1 1(xi = aj). The weights can be uniquely identified by setting ωi = θj(i)/nj(i)

from which it follows that

n
∏

i=1

ωi =

n
∏

i=1

θj(i)/nj(i) =

n
∏

i=1

θj(i)/

n
∏

i=1

nj(i) ∝
J
∏

j=1

θ
nj

j .

The population moment condition can be rewritten in terms of the observation-specific

weights:

J
∑

j=1

θjg(aj , β0) =

n
∑

i=1

ωi

J
∑

j=1

1(xi = aj)g(aj , β0) +

J
∑

j=1

1(nj = 0)θjg(aj , β0).

If the support of x has been explored by the data, then
∑J

j=1 1(nj = 0)θjg(aj , β0) = 0, and

the moment condition becomes

0 =
n
∑

i=1

ωi

J
∑

j=1

1(xi = aj)g(aj , β0) =
n
∑

i=1

ωig(xi, β0).

The assumption that all possible distinct values of x have been observed is questionable.

This assumption is also made by the BB. Imbens and Chamberlain (2003) justify it from

both a theoretical and computational point of view. Rubin (1981), however, discusses its

potential pitfalls. If Pr(x ≥ x(n)) 6= 0, where x(n) denotes the nth order statistics, then

assuming that Pr(x ≥ x(n)) = 0 will have an impact on the resulting inference. The impact

of this assumption is addressed in Section 5 where the coverage properties of the resulting

posteriors are examined.

When the distribution of x belongs to Fθ and all the possible values of x have been

observed, the model can be expressed as a likelihood function,
∏n

i=1 ωi, and a moment

condition,
∑

i ωig(xi, β0) = 0, both expressed in terms of observation-specific weights, ωi

(i = 1, . . . , n).

Since inference is about β, the observation specific weights are nuisance parameters. In a

formal Bayesian framework, nuisance parameters are eliminated through integration. If the

joint prior on (ω, β), π(ω, β), is absolutely continuous with respect to the Lebesgue measure,
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then the marginal posterior of β is

π(β|x) ∝
[
∫

L(x|β, ω)π(ω|β)dω

]

π(β)

where π(ω, β) has been partitioned as π(ω, β) = π(ω|β)π(β). While assuming an absolutely

continuous prior distribution for β is not restrictive, it is important to consider the more

general case where the distribution of ω given β is not necessarily absolutely continuous. A

representation for the marginal posterior of β that takes into account this possibility is

π(β|x) ∝
[
∫

L(x|β, ω)dPωβ

]

π(β),

where Pω,β denotes the joint prior measure on (ω, β), and dPω,β has been partitioned as

dPω,β = dPωβ × dPβ . Given that in our setting the likelihood
∏n

i=1 ωi does not depend

directly on β, the marginal posterior becomes

π(β|x) ∝
{

∫

[

n
∏

i=1

ωi

]

dPωβ

}

π(β). (2)

For the purpose of inference about β, two distributions must be elicited: (i) an uncon-

ditional prior distribution forβ, and (ii) a distribution for ω given β. Elicitation of π(β)

is in the realm of Bayesian analysis and the usual considerations on prior selection apply

(Berger, 1985). Given β, eliciting a prior distribution for ω amounts to choosing the way

in which the statistical information in the moment condition is conveyed into the posterior

distribution. Our innovation concerns the specification of this conditional prior distribution:

using the Kullback-Leibler information-theoretic measure we derive a distribution Pωβ that

fully accounts for the information in the model but remains analytically tractable.

3.1 Minimum Kullback-Leibler conditional distribution

This section shows how the information contained in the moment condition can be translated

into a conditional measure Pωβ that is then used to integrate out the nuisance parameters

of the likelihood, as specified in (2). The starting point is to specify a prior measure Pω on

ω that does not account for the information in the model. Let bx(ω, θ) =
∑n

i=1 ωig(xi, β).
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Consider the following set of measures

P(β) =

{

µ

∣

∣

∣

∣

∫

bx(ω, θ)dµ = 0,

∫

dµ = 1, µ ≪ Pω

}

The set P(β) contains the (Pω-absolutely continuous) measures that satisfy an average

form of the moment conditions. Among the elements of P(β), we choose the measure that

minimizes the Kullback-Leibler information number with respect to Pω, that is the solution

to the following optimization problem (Csiszar, 1975)

Pωβ = arg min
µ∈P(β)

D(µ,Pω), D(Q,P ) =











∫

log
(

dQ
dP

)

dQ if Q ≪ P

+∞ otherwise
(3)

The Kullback-Leibler information number for two probability measures Q and P , D(Q,P ),

is always non negative and D(Q,P ) = 0 iff P = Q a.s. If such Pωβ exists, the convexity

of P(β) guarantees its uniqueness since D(Q,P ) is a strictly convex functional in Q.3 The

probability measure Pωβ is referred to as the I-projection of Pω into P(β).

Minimization problems of the type in (3) play a basic role in information-theoretic ap-

proaches to statistics. In the Bayesian literature, if Pω were the natural invariant non-

informative prior for the problem, maxQ∈P(β) −D(Q,Pω) would be the equivalent to the

maximum entropy distribution in the presence of partial prior information (Jaynes, 1968).

In our setting the intuition behind Pωβ is that it is the distribution that contains the

information about bx(ω, β) = 0 but has the largest entropy with respect to a given (uncon-

ditional) prior distribution on the observation-specific weights.

The following assumptions will be maintained throughout the paper. Let Sρ(β0) be an

open neighborhood of β of radiusρ > 0.

Assumption 1. The measure Pω has a product representation, Pω = Pω,1 × . . . × Pω,n

Assumption 2. For β ∈ Sρ(β0)

3As in Csiszar (1975), in addition to the arithmetic of the extended reals, the following conventions
regarding infinity are adopted in keeping with measure-theoretically consistent operations:

log 0 = −∞, log
a

0
= +∞, 0(±∞) = 0
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(a) The set

TPω(β) =

{

τ :

∫

exp(τbx(ω, β))dPω < ∞
}

is open in Rm.

(b) the n × m matrix G(β) = (g1(β) g2(β) · · · gn(β))′ has full column rank.

Assumption 1 states that under the prior distribution Pω the observation probability

weights are independent, each with distribution Pω,i. The BB makes the same assumption

on the prior probabilities. Assumption 2 is technical and is required to show the existence

of the I-projection of Pω on P(β).

The following proposition gives conditions for the existence and the form of the I-

projection. The proof is based on Theorem 3.4 in Csiszar (1975). Let

P(β; a) =

{

µ :

∫

bx(ω, β)dµ = a, a ∈ Rm

}

,

Am be the set of points a ∈ Rm for which P(β, a) contains some µ such that D(µ,Pω) < ∞,

and ĀPω the interior of APω .

Proposition 1. If Assumptions 1-2 are satisfied, then APω is non-empty, and if 0 ∈ ĀPω

then the I-projection of Pω on P(β) exists and it has the form

Pωβ =











cx(β) · exp(t′bx(ω, β))Pω if ω /∈ N

0 if ω ∈ N
(4)

where

t = arg min
τ∈TPω

∫

exp(τ ′bx(ω, β))dPω , cx(β) =

[∫

exp(t′bx(ω, β))dPω

]−1

and N has µ(N) = 0 for every µ ∈ P(β).

In the case considered here, the existence of the I-projection cannot be established by

invoking closeness of the set P(β) with respect to the variational distance and using Theorem

2.1 in Csiszar (1975). The function bx(ω, β) is unbounded, and closure under the variational

distance is, in this case, inappropriate.
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The conditional measure (4) can be rewritten as

Pωβ = exp(t′bx(ω, β) − log cx(β))Pω

Let ui(β, t) = t′gi(β) and notice that t′bx(ω, β) =
∑n

i=1 ωiui(β, t). Thanks to the special

structure of bx(ω, θ), the I-projection Pωβ is a product measure with components that are

proportional to the measures Pω,i. This in turn implies that under the measure Pωβ the

observation-specific weights are independent.

Proposition 2. Under Assumption 1-2, the ωi (i = 1, . . . , n) are independent under the

I-projection measure Pωβ , each ωi having distribution Pωβ,i given by

Pωβ,i = exp(ωiui(β, τ) − kx(ui(β, τ))Pω,i

where kx(υi) = log
∫

exp(ωυi)dPω,i and τ = arg mint∈TPω

∑n
i=1

∫

exp(ωiui(β, t))dPω,i.

The result of Proposition 2 constitutes the building block for the derivation of the semi-

parametric likelihoods. The measures Pωβ,i will be treated as priors on ωi with respect to

which the inner integration in (2) is evaluated. Notice that the Pωβ,i (i = 1, . . . , n) are

consistent with the way the probabilities θj (j = 1, . . . , J) are apportioned into weights ωi

(i = 1, . . . , n), since Pωβ,i(B) = Pωβ,k(B) for any set B whenever xi = xk, (i = k). The func-

tional form of the distributions Pωβ,i(i = 1, . . . , n) relates the initial prior distribution Pω,i

to Pωβ,i through the term kx(·), the cumulant generating function of the random variable

ωi.

3.2 Integration

The next step in deriving a Bayesian likelihood consists in carrying out the integration with

respect to Pωβ = Pωβ,1 × · · · × Pωβ,n:

π(β|x) ∝
{

∫

[

n
∏

i=1

ωi

]

d (Pωβ,1 × · · · × Pωβ,n)

}

π(β)

It turns out that the integration step in the posterior above is tractable, as the following

proposition makes clear.

12



Proposition 3. Integrating the (unconstrained) likelihood with respect to Pωβ gives a pos-

terior

π(β|x) ∝ L̄(x|β)π(β), L̄(β|x) =
n
∏

i=1

kx,∂(ui(β, τ))

where

kx,∂(υi) =

∫

ω exp(ωυi − kx(υi))dPω,i/

n
∑

i=1

∫

ω exp(ωυi − kx(υi))dPω,i

υi = ui(β, τ) and τ = arg mint∈TPω

∑n
i=1

∫

exp(ωui(β, t))dPω,i.

This last result shows that the integrate likelihood function, L̄(β|x), is the product of n

terms of the form kx,∂(υi). Notice that the numerator of kx,∂(υi) is the first derivative of

the cumulant generating function of ω under the prior Pω,i:

d

dυi
log

∫

exp(ωυi)dPω,i

=

(
∫

exp(ωυi)dPω,i

)−1 ∫

ω exp(ωυi)dPω,i

=

∫

ω exp(ωυi − kx(υi))dPω,i.

The parameter τ also depends on kx(υi). It turns out that for many initial prior distributions

Pω, both kx(υi) and kx,∂(υi) have a simple mathematical form that allows expressing τ and

the posterior distribution as functions of u(β, τ) that do not involve integrals.

4 Connections with GEL methods

What is the form of L̄(β|x) when the initial distribution Pω belong to a given class? In

which cases the functional form is tractable from a computational point of view? Is there a

relationship between the likelihoods obtained in Section 3 and the ones given in the literature

and briefly discussed in Section 2? This section seeks to answer these questions.

The dependence of the integrated likelihoods on the initial prior is through the cumulant

generating function of the observation specific weights (under Pω). Judiciously choosing

the initial prior in such a way that kx(υi) and kx,∂(υi) have a simple mathematical form

allows us to connect the likelihoods to GEL. As shown by the following proposition, eliciting
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a Normal, Poisson, and Gamma initial prior for ω gives likelihoods of very simple and

recognizable form.

Proposition 4. If under the initial prior distribution the ωi (i = 1, . . . , n) are:

a) iid with ωi ∼ N(1, σ2) , then L̄(x|β) has the following form

L̄(x|β) =
n
∏

i=1

1 + σ2ui(β, τ)/2/
n
∑

i=1

(

1 + σ2ui(β, τ)/2
)

, (5)

where τ = arg mint
∑n

i=1(1 + σ2ui(β, t)/2)2.

b) iid with ωi ∼ Poisson(1), then L̄(x|β) has the following form

L̄(x|β) =

n
∏

i=1

exp(ui(β, τ))/

n
∑

i=1

exp(ui(β, τ)), (6)

where τ = arg mint
∑n

i=1 exp(ui(β, t)).

c) iid with ωi ∼ Gamma(1, ς),ς > 0, then L̄(x|β) has the following form

L̄(x|β) =

n
∏

i=1

(1 − ςui(β, τ))−1/

n
∑

i=1

(1 − ςui(β, τ))−1, (7)

where τ = arg mint∈Tγ (β) −
∑n

i=1 log(1 − ςui(β, t)) and Tς(β) = {t : maxi<n ui(β, t) < 1/ς}.

In each case of Proposition 4, and of Proposition 5 below, the function to be minimized

in order to obtain τ is strictly convex, making the likelihood computationally tractable.

However, for likelihood in (7), and the other likelihoods of Proposition 5, the optimization

must be carried on a restricted set.

Proposition 4 shows that there is a close relationship between L̄(x|β) obtained in Section

3 and GEL. For a given β ∈ B, the likelihood is the product of the GEL weights for a specific

criterion function ρ(·). A N(1, 1) initial prior corresponds to a likelihood that is the product

of the weights of the CUE, while a Gamma(1, 1) prior yields a likelihood that is the product

of EL weights. Similarly, when the prior is Poisson(1) then L̄(x|β) is the product of the

weights of ET. This last case corresponds to the BETEL in Schennach (2005).

Poisson, Normal and Gamma are not the only distributions for which the likelihood

displays a relationship with the GEL. The next proposition shows that there exists an

initial prior distribution such that the resulting L̄(x|β) is the product of GEL weights when
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the criterion function corresponds to the Cressie-Read (CR) divergence, that is ρ(υ) =

(1 + γυ)(γ+1)/γ/(γ + 1).4

Proposition 5. There exists an initial prior distribution on ωi (i = 1, . . . , n) such that

L̄(x|β) ∝
n
∏

i=1

(1 + γui(β, τ))1/γ

∑n
i=1(1 + γui(β, τ))1/γ

, (8)

where τ = arg mint∈Tγ (β) −
∑n

i=1(1 + γui(β, t))(γ+1)/γ and Tγ(β) = {t : maxi ui(β, t) <

−1/γ},γ < −1.

The correspondence between L̄(x|β) and the CR criterion function established in Propo-

sition 5 holds only for γ < −1. However, Proposition 5 still includes important cases such

as the Hellinger distance (γ = −3/2).

Notice that the likelihoods obtained by assuming Normal and Gamma priors as in Propo-

sition 4(a) and 4(c) are more general than EL- and CUE-based likelihoods since they allow

for parameters, σ and ς, that control the spread of the prior distributions. When σ → 0 and

ς → 0 the information in the moment condition is annihilated and the likelihoods become

concentrated at n−n regardless of the value of β. The likelihood in (6) does not admit a

variance parameter, because in the Poisson case variance and mean are parameterized by

the same parameter and hence it is impossible to control the variance without affecting the

mean of the distribution.

5 Validity

Is inference based on π(β|x) ∝ L̄(x|β)π(β) valid? Monahan and Boos (1992) deem a likeli-

hood valid, in the sense of giving valid posterior inference, if: (i) is based on the conditional

density of the data given the parameter of interest; (ii) is supported by probability calculus.

Strictly adhering to i) would preclude considering Bayesian analysis in nonparametric and

semiparametric settings where, by definition, the conditional distribution of the data given

4As shown in Newey and Smith (2004), minimization of
Pn

i=1 h(pi)/n subject to
Pn

i=1 pigi(β) = 0,
Pn

i=1 pi = 0 over multinomial distributions putting masses (p1, . . . , pn) on (x1, . . . , xn) when h(x) =

[(nx)γ+1 − 1]/γ(γ + 1) is related to solving mint

Pn
i=1 ρ(t′gi(β))/n where ρ(υ) = (1 + γυ)(γ+1)/γ/(γ + 1).

This form of h(x) was first studied by Cressie and Read (1984) and it is often referred to as the Cressie-Read
divergence.
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the parameter is unavailable. The second requirement is to be taken seriously. By proba-

bility calculus we mean the application of Bayes theorem and the integration of nuisance

parameters with respect to a prior distribution.

In what follows we investigate to what extent π̄(β|x) provides valid posterior inference.

We will rely on the validity by coverage concept of Monahan and Boos (1992). If a pos-

terior is valid by coverage then, for every continuous prior distribution π(β), the quantity

a(x, β) =
∫ β
−∞ π̄(u|x)du is unconditionally distributed as U(0, 1). To see it, let Q(u) =

∫ u
−∞ f(x|β)π(β)dβ, Q(y)−1 = inf{u : Q(u) ≥ y}, and a(x, y)−1 = inf{u : a(x, u) ≥ y}.

Then, if π(β|x) ∝ f(x|β)π(β), we have

∫ ∫

1(a(x, β) ≤ z)f(x|β)π(β)dβdx

=

∫ [∫

1(a(x, β) ≤ z)π(β|x)dβ

]

f(x)dx

=

∫

Q(a(x, z)−1)f(x)dx

= z

where the last equality follows from the fact that Q(a(z)−1) = z for any x.

When the posterior is based on the (scaled) true conditional density, f(x|β), a(β) ∼
U(0, 1), the deviation from U(0, 1) indicates that the posterior probability regions have the

wrong coverage probabilities. Operationally, the procedures works as follows. First, generate

β(j), j = (1, . . . , R) independently from π(β). Then, conditionally on each β(j)(j = 1, . . . , R)

generate the data according to f(·|β(j)), obtaining x(j)(j = 1, . . . , n). Finally, compute

a(β(j)) =
∫ β(j)

−∞ π̄(x(j)|β)dβ.

Assessing validity by coverage boils down to calculating test statistics to quantify their

deviation from uniformity, and hence detecting bad coverage.

We consider two simple models. The first model is a quantile restriction. This case is

particularly interesting because it shows that in certain instances, i.e., in a model defined by

bounded moment functions, the choice of the prior distribution for the nuisance parameters is

immaterial. The second is an overidentified normal location model. This model is interesting

because often the moment condition models considered in economics are overidentified.
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5.1 Quantile

The qth quantile of the real valued random variable X with distribution function F (x) =

Pr(X ≤ x) is defined as βq = inf{x : F (x) ≥ q}. The qth quantile satisfies the following

moment condition

E [δ(x, βq) − q] = 0 (9)

where δ(x, β) = 1(x ≤ β). For the population median, q = 1/2, analysis of the validity by

coverage of (7) has been carried out by Lazar (2003), who also consider the nonparametric

likelihood based on the binomial character of the empirical distribution function proposed

by Jeffreys (1967, p.211-2)




n

k(β1/2)



 (1/2)n (10)

where k(β) =
∑n

i=1 δ(xi, β).

We note that, in this case, the integrated likelihoods derived in Section 4 have a closed-

form solutions. Consider the likelihood resulting from multiplying the weights of EL and

the likelihood resulting from multiplying the weights of the ET. These two likelihoods are

equivalent up to a proportionality constant, as the next result shows.

Appendix B derives expressions for the likelihoods given in Proposition 4 and Proposition

5. In particular, it is shown that 7, 6, 8 and 5 are equivalent up to a proportionality constant

that is

L̄EL(x|βq) ∝ L̄ET (x|βq) ∝ L̄CR
γ (x|βq) ∝ L̄CUE(x|β) (11)

∝
(

q

k(βq)

)k(βq)( (1 − q)

1 − k(βq)

)n−k(βq)

Equation 11 implies that Bayesian inference based either on L̄EL(x|βq), L̄ET (x|βq), L̄CR
γ (x|βq)

and L̄CUE(x|β) will be equivalent.5 Notice that, as for the nonparametric likelihood in 10,

the support of 11 coincides with the set of observed values x = (x1, . . . , xn) and that the like-

5Ragusa (2006a) shows that MLE estimators based on likelihood like the ones in 11 and relative to
parameters defined through smooth moment restrictions are third order efficient after bias correction. The
fact that when the model is E[δ(x, βq)− q] = 0 the likelihood based on EL, ET, and on CR are proportional
seems to suggest that some form of higher order equivalence may apply to nonsmooth setting as well.
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lihood is constant on βq ∈ [xi−1, xi), (i = 1, . . . , n). These features of 11 and 10 have compu-

tational implications that lead to an easy method for calculating quantiles of the posteriors.

Let L̄k denote the value of the likelihood on each interval (xk+1 − xk), (k = 1, . . . , n − 1).

Then the percentiles of the posterior distribution are given by

Pπ(β|x)(β ≤ p) =
∇L1 + ∇L2

∇L

where

∇L1 =

kp
∑

k=1

(xk+1 − xk)L̄k

(
∫ xk+1

−∞
π(β)dβ −

∫ xk

−∞
π(β)dβ

)

∇L2 = (p − xkp)L̄k

(
∫ xkp

−∞
π(β)dβ −

∫ p

−∞
π(β)dβ

)

∇L =
n−1
∑

k=1

(xk+1 − xk)L̄k

(∫ xk+1

−∞
π(β)dβ −

∫ xk

−∞
π(β)dβ

)

and kp = sup{k : xk < p}.
Figure 1 plots the posterior distribution for the median of a sample of ten observations

based on (10) and (11).6 The posterior is plotted for three proper priors: N(0,
√

2), N(0, 1)

and U(−3, 3), as well as for the the improper diffuse prior π(β) ∝ 1. In each graph, the

continuous line plots the posterior distribution based on (11) and the dashed line plots

the posterior based on (10). The curves describing the (proper) prior distributions are

also plotted. The band in the top portion of each graph represents the 95% confidence

interval based on asymptotic calculations. The posterior distribution based on the Jeffreys

nonparametric likelihood is virtually indistinguishable from the one based on (11). There

are minimal differences on the mass of probability the two methods put on the tail, with

the Jeffreys’ likelihood-based posterior putting more mass on the tails.

Next we calculate a(β) when (x1, . . . , xn) are iid N(0, 1), n = 20 and β ∼ N(0, σ2
π),

σ2
π = {.1, 3, 12}. Figure 2 plots the quantiles of a(β) against the quantiles of the distribution

of U(0, 1) while Figure 3 plots the histogram of a(β) for the three prior distributions. The

6The ten observations are

x = {0.507875807673672, 4.43238097646257, −1.69965269919334, −0.753758224087492, 0.580532998124808,

1.45526401607326, 1.64006931129037, 3.25264997161796, 0.572136677346761, 7.15694257504198}

18



plots are based on 10, 000 replications. When the prior is very tight, both the EL, ET, CUE

and CR class of likelihoods and the Jeffreys’ likelihood are substantially valid by coverage.

When the prior is more disperse, the nonparametric likelihoods are invalid by coverage, as

clearly showed by the quantiles-to-quantiles plot and the histograms.

5.2 Overidentified Location Scale Model

Here we consider an overidentified model. The parameter of interest is defined by

E[g(x, β0)] = 0, g(x, β) =





x − β

(x − β)2 − 1



 .

and x ∼ N(0, 1). In this case, the value of the parameter that solves the moment condition

is β0 = 0. Bayesian inference about β is based on the posterior

πBayes(β|x) =

∏n
i=1 f(xi|β)π(β)

∫
∏n

i=1 f(xi|β)π(β)dβ
(12)

where f(xi|β) ∝ e−(β−x)2/2. For simplicity, we calculate a(β) for the semiparametric likeli-

hoods based on EL, ET, and CUE. Three sets of priors are considered: (i) β ∼ U(−1, 1); (ii)

β ∼ U(−2, 2); iii) β ∼ U(−5, 5). The choice of uniform priors is for convenience, since in

this case the numerical integrations required to rescale the likelihoods can be carried out on

compact intervals. The nonparametric likelihoods are calculated by solving their respective

optimization problems that define the parameter τ .

Figures 5 to 7 show quantiles-to-quantiles plots of the criterion a(β) for the set of priors

for sample sizes of n = {20, 50, 100}. It is immediately apparent that the likelihood based

on the CUE is invalid by coverage for any sample size considered here. Also, the quantiles

of a(β) and the quantiles of the uniform distribution do not get closer as the sample size

gets larger. The quantiles-to-quantiles plots for the EL and ET based likelihoods show

instead that both these likelihoods are approximately valid by coverage. To see whether the

distribution of a(β) is U(0, 1) a Kolmogorov Smirnov (KS) test can be employed in each

case. Figure 4 plots the p-values of the KS-statistics for the posterior based on EL, ET

and CUE. The first horizontal line from the bottom denotes 5% significance; the second

horizontal line denotes 10% significance. The plots clearly show that for all the priors the
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distribution of a(β) is statistically indistinguishable from that of U(−1, 1) when n = 50.

6 Conclusion and future work

This paper proposes a new class of semiparametric likelihoods for Bayesian inference. These

likelihoods are useful when the only information about the parameter of interest is expressed

in terms of a moment condition. This paper contributes a method for incorporating the

information about the parameter into a likelihood function. This is achieved through the

integration of nuisance parameters with respect to a tilted distribution that is consistent with

the moment condition. The result is a semiparametric likelihood whose features depend on

the initial prior elicited on the nuisance parameters.

We are able to link these likelihoods to GEL methods. In particular, we obtain likelihoods

related to EL, ET, CUE and CR. The form of these likelihoods is simple, being the product

of the weights generated by the GEL procedures when the criterion function corresponds to

EL, ET, CUE and CR, respectively.

Inference based on the semiparametric likelihoods will be sensitive to the assumptions

under which the likelihoods are derived. A strong assumption is that all the possible values

of the random variable have been observed. When this assumption is violated, the prior

will be effectively data-dependent. In an idealized Bayesian view the prior should consist

of information separated from the data and the model at hand. However, we point out

that data- and model-dependence are common to the noninformative prior literature. We

have addressed the issue of the validity of the resulting likelihoods and we find that the

prior elicitation affects inference far more dramatically than the nonparametric assumptions.

However, more research on this issue is needed.

It would also be extremely interesting to study the frequentist properties of the semipara-

metric likelihoods derived in this paper. By extending the work of Chernozhukov and Hong

(2003), Ragusa (2006b) shows that normal asymptotic theory applies. He also shows that

the estimators defined as the maximum of these likelihoods enjoy some interesting higher

order properties, such as higher order efficiency after bias correction. An investigation of the

coverage properties of the credible regions in repeated samples would be a welcome addition

to the literature.
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A Proofs of Propositions

Proof of Proposition 1

The proof makes heavy use of the results in Theorem 3.1 and Theorem 3.3 of Csiszar

(1975). The functions in bx(ω, β) are linearly independent modulo Pω if c′bx(ω, β) = 0,

c = (c1, . . . , cm) ∈ Rm , if and only if c1 = c2 = . . . = cm = 0 for all ω with Pω(ω) > 0. The

functions constituting bx(ω, β) are linear combination of the columns of G(β), bx(ω, β) =

(G1(β)ω, . . . , Gm(β)ω). where Gk(β) denotes the kth column of G(β). Linearly indepen-

dence of the columns of bx(ω, β) implies that (c1G1(β) + · · · + cmGm(β))ω = 0 if and only

if c1 = c2 = . . . = cm = 0. By assumption, the column of G(β) are linearly independent

and this suffice to show linear independence of bx(ω, β) if Pω(ω = 0) < 1. By linearly inde-

pendence of bx(ω, β) and openness of TPω(β) the interior of Am is non-empty (see Csiszar

(1975) remarks at page 156). Since by assumption 0 ∈ ĀPω , the I-projection exists and it is

of form

Pωβ =











cx(β) · exp(t′bx(ω, β))Pω if ω /∈ N

0 if ω ∈ N

To determine cx(β) notice that
∫

exp(t′bx(ω, β))dPω = 1 implies the cx(β) given in the

proposition and that integrability and openness of TPω implies that the solution is feasi-

ble,
∫

bx(ω, β) exp(t′bx(ω, β))dPω = 0, for t that solves the strictly convex minimization

minτ∈TPω

∫

exp(t′bx(ω, β))dPω .

Proof of Proposition 2

The proof simply consists in rearranging the Pωβ and showing that the measure Pωβ can be

rewritten as the product Pωβ,1 × . . . × Pωβ,n. Notice that

exp
(

t′bx(ω, β) − log cx(β)
)

Pω

= exp

(

n
∑

i=1

ωifi(β, t) − log

∫

exp

(

n
∑

i=1

ωifi(β, t)

)

dPω

)

Pω

=

{

n
∏

i=1

exp

(

ωifi(β, t) −
n
∑

i=1

∫

exp(ωifi(β, t))dPω,i

)}

Pω,1 × . . . × Pω,n

= Pωβ,1 × . . . × Pωβ,n
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By similar arguments,

t = arg min
t∈TPω

∫

exp(
n
∑

i=1

ωifi(β, t))dPω

= arg min
t∈TPω

n
∑

i=1

∫

exp(ωifi(β, τ))dPω,i

as required.

Proof of Proposition 3

By independence of ωi (i = 1, . . . , n) under Pωβ and by rearranging

L̄(x|β) =

∫ n
∏

i=1

ωid(Pωβ,1 × · · · × Pωβ,n)

=

∫ n
∏

i=1

ωi exp(ωif(β, t) − kx(fi(β, t)))dPωβ,1 × · · · × dPωβ,n

=
n
∏

i=1

∫

ωi exp(ωif(β, t) − kx(fi(β, t)))dPωβ,i

=

n
∏

i=1

φi

Since the φi are the probabilities on x they are normalized to 1, giving the first result. The

second result follows from Proposition 2.

Proof of Proposition 4

For part (a), we need to show that the derivatives of the cumulant generating function of

the Normal distribution with mean 1 and variance σ2 corresponds to the likelihood objective

functions in (5) and the cumulant generating function. The cumulant generating function

of N(1, σ2) is given by kx(υ) = υ + σ2υ2/2 and hence the numerator of

kx,∂(υi) = (1 + υi)/

n
∑

i=1

(1 + υi).
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For part (b), we need to show that the derivatives of the cumulant generating function

of the Poisson distribution with mean 1 corresponds to the likelihood objective functions in

(6). The cumulant generating function of Poisson(1) is given by kx(υ) = exp(υ)− 1 and it

follows that, in this case,

kx,∂(υi) = exp(υi)/

n
∑

i=1

exp(υi).

For part (c), we need to show that the derivatives of the cumulant generating function

of the Gamma distribution with parameters 1 and ς corresponds to the likelihood objective

functions in (7). The cumulant generating function of Gamma(1, ς) is given by kx(υ) =

− log(1 − ςυ) and it follows that, in this case,

kx,∂(υi) = (1 − ςυi)
−1/

n
∑

i=1

(1 − ςυi)
−1.

Noting that in each case of the proposition the parameters τ is the arg mint∈T (β)

∑n
i=1 kx(ui(β, t)),

where T (β) = {t : maxi ui(β, t) < ∞}, gives the result.

Proof of Proposition 5

Let ω =
∑L

i=1 yi, where yi (i = 1, . . . , L) are iid with density p(y) = δδ

θδΓ(δ)
e−

δ
θ
yyδ−1, (δ > 0,

θ > 0, and y > 0), and L ∼ Poisson(λ). The moment generating function of p(y)

Ly(t) ≡ δδ

θδΓ(δ)

∫ +∞

0
e−

δ
θ
yyδ−1etydy

=
δδ

θδΓ(β)

∫ +∞

0
e(t−

δ
θ )yyδ−1dy

=
δδ

θδΓ(δ)

Γ(δ)

(θ
δ − y)δ

=
δδ

θδ( δ
θ − y)δ

=

(

δ

δ − θt

)δ

, θt < δ
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Since L and yj (j = 1, . . . , L) are independent, the moment generating function of ω =
∑L

i=1 yi is

Lω(t) ≡
∞
∑

k=0

[∫

et
PL

j=1 yjp(y)dy

]

p(L = k)

=

∞
∑

k=0

Ly(t)
k λke−λ

k!

= eLy(t)λe−λ
∞
∑

k=0

(λLy(t))
ke(λL(t))

k!

= eLy(t)λe−λ

where the last equality holds because (λLy(t))
ke(λL(t))/k! is the pdf of Poisson(λLy(t)) and,

hence,
∑∞

k=0
(λLy(t))ke(λL(t))

k! = 1. It follows that the logarithm of the moment generating

function of the distribution of ω is given by logLω(t) = λLy(t) − λ. Thus, if each ωi (i =

1, . . . , n) is ωi =
∑L

j=1 yj, yj ∼ p(y) and L ∼ Poisson(λ) the likelihood, after normalization,

is given by

n
∏

i=1

(ϕi/
n
∑

i=1

ϕi), ϕi ≡
∂(λLy(t) − λ)

∂t

∣

∣

∣

∣

t=fi(β,t)

= λθ

(

δ

δ − θfi(β, t)

)δ+1

where

t = arg min
τ∈Tδ,θ(β)

[

λ
n
∑

i=1

(

δ

δ − θfi(β, τ)

)δ

− λ

]

, Tδ,θ(β) = {τ : δ − θfi(β, τ) > 0}

It then follows that for γ < −1 and we have that ϕi = λ(γ + 1)(1 + γfi(β, t))1/γ where γ =

−θ/δ and δ = −γ/(γ+1). Hence, the likelihood obtained is equivalent, up to proportionality

constant, to the likelihood that one would obtain by multiplying the normalized weights of

the GEL with a Cressie Read criterion, for γ < −1.

24



B Proof of Equation (11)

The parameter τ for EL, ET, CUE and CR based likelihood is implicitly defined by

n
∑

i=1

ρ1(τgi(βq))gi(βq) = 0,

where ρ1(u) = (1 + u)−1 for EL, ρ1(u) = exp(u) for ET, ρ1(u) = (1 + u) for CUE, and

ρCR
1 (u) = (1 + γu)1/γ for CR. Since gi(βq) = 1(x ≤ βq) − τ , the equation defining τ can be

rewritten as

k(βq) [ρ1(τ(1 − q))(1 − q)] + (n − k(βq)) [ρ1(−τq)q] = 0

The likelihoods have the same basic structure:

L̄(x|β) ∝ [ϕ1(βq)/r(βq)]
k(βq) [ϕ2(βq)/r(βq)]

n−k(βq) , (13)

where

r(βq) =
n
∑

i=1

ρ1(τgi(βq))

The proof for ET has been given by Lancaster and Jae Jun (2006). The other three cases

are discussed separately below.

(a) For the EL the likelihood a closed-form solution for τ is obtained by solving

n
∑

i=1

δi(βq) − q

1 + τ(δi(βq) − q)
= 0, δi(βq) = 1(xi ≤ βq) − q

Solving gives

τ =
k(βq)q − (n − k(βq))(1 − q)

q(1 − q)n
(14)

notice that for EL, r(βq) = n. Substituting 14 into the formula for the weights gives

ϕ1(βq) =
(1 − q)

k(βq)
, ϕ2(βq) =

q

(n − k(βq))
,
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and hence the likelihood is proportional to

[

(1 − q)

k(βq)

]k(βq) [ q

n − k(βq)

]n−k(βq)

∝
[

q

k(βq)

]k(βq) [ 1 − q

n − k(βq)

]n−k(βq)

where the last proportionality follows from multiplying the likelihood by (q/1 − q) =

(q/1 − q)k(βq)(q/1 − q)n−k(βq) and simplifying.

(b) For the CUE we have that
∑n

i=1(1+τgi(βq)) = n+τ(k(βq)−nq). Tedious but straight-

forward algebraic manipulations show that

τ = −
(

k(βq)(1 − q)2 + (n − k(βq))q
2
)−1

(k(βq) − nq) (15)

The sum of the weights of the CUE is given by

r(βq) =
k(βq)(n − k(βq))

k(βq)(1 − q)2 + (n − k(βq))q2

Using the above formula for r(βq), substituting 15 into the formula for the weights and

simplifying gives

ϕ1(βq)/r(βq) =
q

k(βq)
, ϕ2(βq)/r(βq) =

1 − q

n − k(βq)

Substituting the above expressions into (13) proves the result for the CUE-based likeli-

hood.

(c) For the CR case τ is given, for γ < −1, by

τ =
1 − c

cγ(1 − q) + γq
, c =

[

k(βq)(1 − q)

(n − k(βq))q

]γ

Simple, yet tedious calculations, reveal that

r(βq) = k(βq)

[

1

c(1 − q) + q

]1/γ

+ (n − k(βq))

[

c

c(1 − q) + q

]1/γ

and hence

ϕ1(βq)/r(βq) =
q

k(βq)
, ϕ2(βq)/r(βq) =

1 − q

n − k(βq)
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Substituting the above expressions into (13) proves the result for the CR-based likeli-

hood.
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Figure 1: Comparison of posterior distributions.
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Figure 2: Quantiles to quantiles plot of the a(β) criterion for different values of the variance
of the prior distribution of β.
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Figure 3: Histograms of the a(β) criterion for different values of the variance of the prior
distribution of β.
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Figure 4: pvalues of the KS statistics for testing that a(β) ∼ U(0, 1). pvalues are plotted
for each sample size and prior considered.

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

0.
0

0.
4

0.
8

20 50 100

β ∼ U(−1, 1) β ∼ U(−2, 2) β ∼ U(−5, 5)

Observations

Observations

Observations

L̄EL

L̄ET

L̄CUE

L̄EL

L̄ET

L̄CUE

L̄EL

L̄ET

L̄CUE

34



Figure 5: Quantiles to Quantile plot of the a(β) criterion: β = U(−1, 1)
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Figure 6: Quantiles to Quantile plot of the a(β) criterion: β = U(−2, 2)
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Figure 7: Quantiles to Quantile plot of the a(β) criterion: β = U(−5, 5)
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