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Abstract. This paper presents an estimated model with learning and provides evidence that

learning can improve the �t of popular monetary DSGE models and endogenously generate realistic

levels of persistence.

The paper starts with an agnostic view, developing a model that nests learning and some of the

structural sources of persistence, such as habit formation in consumption and in�ation indexation,

that are typically needed in monetary models with rational expectations to match the persistence of

macroeconomic variables. I estimate the model by likelihood-based Bayesian methods, which allow

the estimation of the learning gain coe¢ cient jointly with the �deep�parameters of the economy.

The empirical results show that when learning replaces rational expectations, the estimated

degrees of habits and indexation drop near zero. This �nding suggests that persistence arises in

the model economy mainly from expectations and learning. The posterior model probabilities show

that the speci�cation with learning �ts signi�cantly better than does the speci�cation with rational

expectations.

Finally, if learning rather than mechanical sources of persistence provides a more appropriate

representation of the economy, the implied optimal policy will be di¤erent. The policymaker will

also incur substantial costs from misspecifying private expectations formation.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a popular tool for the

analysis of the monetary transmission mechanism.1 These models are built under the hypothesis

of rational expectations and assume intertemporal optimizing behavior by economic agents. Being

derived from explicit microeconomic foundations, they facilitate policy evaluation in terms of the

welfare of private agents. Unfortunately, the canonical monetary models with rational expectations

often cannot match the observed behavior of macroeconomic variables, and, in particular, they fail

to match the persistence of aggregate output and in�ation. Since a primary scope of these models

is to serve for policy advice, a failure to re�ect the dynamics of actual economic variables would

necessarily limit their potential for that scope.

Economists have therefore proposed a number of extensions to the standard framework, by

embedding in their setups potential sources of endogenous persistence. They have incorporated

features such as habit formation in consumption, indexation to lagged in�ation in price-setting, rule-

of-thumb behavior, or various adjustment costs. Altig et al. (2004) and Christiano, Eichenbaum

and Evans (2005) have developed models that incorporate several of these extensions and can

account for the inertia in the data. Smets and Wouters (2003, 2004a) estimate similar models by

Bayesian methods, incorporating a mix of frictions and persistent structural shocks, obtaining a

remarkable �t of the data. Also, Boivin and Giannoni (2003) and Giannoni and Woodford (2003),

working with smaller monetary policy models, but still incorporating a number of additional sources

of persistence, derive impulse responses that approximate those derived from VARs. The cited

extensions essentially improve the empirical �t by adding lags in the model equations. Researchers

estimating these rich models under the assumption of rational expectations typically �nd that

substantial degrees of habit persistence and in�ation indexation are supported by the data. The

exact value of the estimates varies, but there is consensus that these additional sources of persistence

are necessary to match the inertia of macroeconomic variables.

Contribution of the paper. This paper suggests a di¤erent approach to the problem, by

revisiting the standard expectations formation of the agents. The paper evaluates the potential

for learning as a mechanism capable of endogenously generating persistence in the economy and

improving the empirical �t of current monetary DSGE models. In particular, it studies whether

1Clarida, Gali�, and Gertler (1999), Goodfriend and King (1997), McCallum and Nelson (1999), and Woodford

(2003) are standard examples describing dynamic general equilibrium models for monetary policy analysis.
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learning or the �mechanical� sources of persistence2 that are typically important under rational

expectations, such as habits and indexation, are more successful in accounting for the observed

behavior of macroeconomic variables. I therefore depart from the conventional rational expectations

assumption, according to which agents have perfect knowledge about every detail in the economy.

Agents in the model form expectations using correctly speci�ed economic models (corresponding

to the rational expectations solution), but they do not have knowledge about the parameters of the

model. They use historical data to learn those parameters over time, updating their beliefs through

constant-gain learning. The standard rational expectations speci�cation is nested in the model as

a limiting case. This is an appealing feature of the paper, since it allows, among other things, a

simple test of the rational expectations hypothesis.

The paper therefore represents an attempt to study the empirical implications of learning. One

possible way to proceed would consist of calibrating and simulating the model to evaluate if eco-

nomic variables become more inertial under learning. The problem is that both learning and the

mentioned endogenous sources of persistence may in principle lead to inertia. The di¤erent speci-

�cations can be close to observational equivalence (focusing, for example, on the implied �rst and

second moments from the simulations), making di¢ cult the test of one speci�cation versus the

other.

The present paper therefore starts from a more agnostic view. I develop a model in which agents

are learning, but I also introduce some of the additional features that are essential to account for

the persistence in the data under rational expectations. In particular, I allow for habit formation

in consumption and indexation to past in�ation in price-setting for non-optimizing �rms. With

such extensions, in�ation and output may endogenously display inertia. The model therefore nests

di¤erent sources of persistence: evolving expectations and learning on one side, and �mechanical�

sources of persistence on the other side. It is therefore left to the data to disentangle the role of

the various sources. The scope will be to test whether those mechanical sources of persistence will

still be necessary to match the data when the assumption of fully rational expectations is relaxed

in favor of learning.

I estimate the model using likelihood-based Bayesian methods. The econometric approach allows

me to jointly estimate the coe¢ cients describing agents� learning, such as the gain coe¢ cient

2I refer to them as �mechanical�since in the case of habits, researchers need to alter the consumers�utility function

to imply dependence on lagged consumption, and in the case of indexation, they posit a rule to induce inertia through

the assumption that a fraction of �rms simply adjust prices automatically, according to the past observed in�ation

rate.
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(indicating their learning speed), together with the �deep�parameters of the economy. This strategy

responds to a potential criticism of models with learning, in which the results might depend on the

parameters that need to be chosen by the researcher. Here the learning speed is jointly estimated

with the rest of the system, avoiding potential arbitrariness.

It is fundamental to identify the sources of persistence in the economy from a positive, but also

from a normative, standpoint. Suppose that habit formation and in�ation indexation are important

features of the �true�structure of the economy. In that case, habits and indexation would a¤ect the

welfare-based loss function that the policymaker should minimize, as shown in Woodford (2003). On

the other hand, suppose that habits and indexation were added to the model mainly for empirical

reasons, but turned out to be a mistaken representation of the economy (and were signi�cant in

the data only because they served as proxies for some omitted features): the welfare analysis under

such microfoundations would then lead to misleading policy indications. With persistence driven

by learning, the implied policy maker�s loss function and constraints would in fact be di¤erent, and

so would optimal policy. Also, in light of McCallum�s (1988) argument for robustness of policy

rules, even assuming rational expectations it would still be desirable to have an optimal policy

that is at least robust to small deviations from full rationality. Optimal policy should instead take

learning into account, if this is found to be empirically important.

In providing an empirical analysis of the importance of learning, the paper builds on previous

literature on adaptive learning in macroeconomics. There are not many studies that empirically

analyze the macroeconomic implications of adaptive learning. At the earlier stages, this literature

was mainly theoretical and focused on the convergence of the system to the Rational Expectations

Equilibrium (REE). Evans and Honkapohja (2003a,b), Bullard and Mitra (2002), and Preston

(2003) are examples that verify the learnability of the REE in the context of monetary models.

More recently, Bullard and Eusepi (2005), Cogley and Sargent (2005b), Orphanides and Williams

(2003b), Primiceri (2003), Sargent (1999), and Sargent, Williams and Zha (2004), among others,

have employed learning in empirical studies aimed at understanding the post-war evolution of US

in�ation and monetary policy. These papers share the use of learning as a tool that can help in

understanding some particular historical episodes, often harder to explain in a rational expectations

setup.

The present paper tries, instead, to provide a more general empirical study of the e¤ects of learn-

ing. Its scope is akin to the work by Williams (2003) and Collard and Dellas (2004), who study the
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implications of learning for persistence and volatility in simple calibrated real and monetary busi-

ness cycle models. Both papers investigate whether learning induces persistence and volatility by

simulating their calibrated models and comparing the implied features of economic variables under

learning and rational expectations. Collard and Dellas present a fully forward-looking monetary

model where agents have imperfect information about some variables and gradually learn them

over time. Their model performs better than the canonical complete information speci�cation ac-

cording to standard moments criteria. Williams �nds, instead, little e¤ects of learning in calibrated

RBC or New Keynesian models, when agents learn about reduced forms of the aggregate laws of

motion (�nding more encouraging results when he allows agents to learn about structural features

of the economy). Williams uses a speci�cation of learning similar to this paper�s, while Collard

and Dellas�framework is more in the tradition of the imperfect information and signal extraction

literature. The present paper shares their scope of studying the e¤ects of learning, but di¤erently

from them it exploits actual data. This permits to verify if learning is supported by the empirical

evidence and to compare the model with learning with alternative descriptions of the economy.

Similarly to recent empirical papers in macroeconomics,3 this paper adopts Bayesian methods

in the estimation. Smets and Wouters (2003, 2004a) provide �rst examples of estimated DSGE

models, embedding several frictions and shocks, that �t the data as well as unrestricted VARs.

Empirical studies typically work with DSGE models with rational expectations. The current paper

instead uses Bayesian methods to estimate a DSGE model with non-fully rational expectations

and learning. As anticipated, a potential criticism of models with adaptive learning, also discussed

in Marcet and Nicolini (2003), emphasizes the arbitrary choices often available to the researcher,

which render the model hardly falsi�able. Milani (2004), in fact, shows how his estimates strongly

vary over the range of possible gain coe¢ cients. In the present paper, instead, the gain coe¢ cient

is also estimated, leaving less room for arbitrariness. On the methodological side, the paper�s joint

estimation is similar in spirit to the approach of Sargent, Williams and Zha (2004), who employ a

simple empirical model with learning and estimate some of the learning parameters (the variance-

covariance matrix of the policymaker�s initial beliefs, in their case) jointly with the other parameters

of the economy.

More generally, by estimating a DSGE model with learning, the paper provides an example

of a �Non-Rational Expectations Econometrics�(or �Irrational Expectations Econometrics�), which

3DeJong, Ingram and Whiteman (2000), Otrok (2001), Lubik and Schorfheide (2003, 2004), Smets and Wouters

(2003, 2004, 2005), Rabanal and Rubio-Ramirez (2003), Fernandez-Villaverde and Rubio-Ramirez (2004a), Laforte

(2003), Gali�and Rabanal (2004), and Justiniano and Preston (2004) are some examples.
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Ireland (2003) judged as missing from the branch of the literature that studies, usually theoretically,

the impact of learning in macroeconomics.

Results. The empirical results show that the essential role of mechanical sources of persistence

(habits, indexation) in DSGE monetary models rests on the assumption of fully rational expecta-

tions. When agents are allowed to learn the true parameters of the economy over time, I �nd that

habits and indexation are no longer essential, being estimated at values close to zero in the data.

This �nding suggests that learning can represent an important source of persistence in the economy.

Indeed, learning might represent a single mechanism capable of creating persistence, replacing the

features needed in various sides of the conventional rational expectations model to improve its

empirical properties. The posterior model probabilities show that the speci�cation with learning

(and no other sources of endogenous persistence) �ts considerably better than the speci�cation with

rational expectations, even enriching the latter with habit formation and indexation. If learning

rather than mechanical sources of persistence provides a more appropriate representation of the

economy, the implied optimal policy will be di¤erent. Optimal policy under rational expectations

performs poorly if implemented in a model where agents have instead imperfect knowledge and are

learning, suggesting non-negligible welfare costs of misspecifying public expectations formation.

Outline. The paper is structured as follows. Section 2 presents the general framework, starting

from the microfoundations of a standard DSGE model for monetary policy analysis and �rst consid-

ering the case of rational expectations. I allow for the existence of additional endogenous sources

of persistence, such as indexation to past in�ation and habit formation in private expenditure.

Section 3 departs from rational expectations, introducing learning. It summarizes the aggregate

dynamics of the model with learning and describes the expectations formation mechanism. The

empirical part of the paper starts in Section 4, where I present the Bayesian techniques employed

for estimation. Section 5 presents and discusses the empirical results. It also illustrates the results

of a model comparison exercise between the learning and rational expectations models. Section

6 veri�es the robustness of the �ndings to a number of extensions. The results have implications

for optimal policy, which are sketched in Section 7. Section 8 concludes and discusses possible

directions for future research.

2. The Framework

In this section, I derive the aggregate dynamics for the economy, starting from the microeconomic

foundations of a simple dynamic stochastic general equilibrium (DSGE) model (as in Woodford
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(2003)). Here, I present the model under the assumption of rational expectations. In the following

of the paper, I shall depart from the conventional expectations formation mechanism, assuming

that agents employ correctly speci�ed models of the economy to form their expectations and learn

the relevant parameters over time. The standard rational expectations speci�cation will be nested

in the model with learning as a special limiting case. I enrich the setup by introducing additional

features that are usually needed under rational expectations to endow the model with minimally

satisfactory empirical properties. A similar rational expectations framework has been used by

Boivin and Giannoni (2003), Giannoni and Woodford (2003), and also described in Woodford

(2003). First, I allow for habit persistence in the level of aggregate expenditure, assuming that the

utility �ow for each household i in period t depends not only on current expenditure Cit , but also on

the level of expenditure in the previous period Cit�1. On the supply side, I allow for price indexation

for �rms that are not allowed to set their price optimally in a given period. This extension, recently

proposed by Christiano, Eichenbaum and Evans (2005), generates more realistic levels of in�ation

inertia and has been also used in Smets and Wouters (2003, 2004a,b) and Altig et al. (2004).

2.1. Optimal Consumption with Habit Formation. I assume a standard economy populated

by a continuum of households indexed by i and distributed uniformly on the [0; 1] interval. Each

household i seeks to maximize a discounted sum of future utilities of the form:

Et

( 1X
T=t

�T�t
�
U
�
CiT � �CiT�1; �T

�
�
Z 1

0
v(hiT (j); �T )dj

�)
(2.1)

where � 2 (0; 1) is the usual household�s discount factor, CiT is an index of the household�s con-

sumption of each of the di¤erentiated goods supplied in t, hiT (j) is the amount of labor supplied

by household i for the production of each good j. �T is a vector of exogenous aggregate preference

shocks. The parameter 0 � � � 1 measures the degree of habit formation. Consumer�s utility

therefore depends positively on the deviation of consumption CiT from an �internal�stock �CiT�1,

and negatively on the total labor supplied. The function U (�; �) is increasing and concave for each

� and v (�; �) is increasing and convex for each �. I abstract from real money balances in the utility

function, considering the cashless limiting economy described in Woodford (1998). Et represents

the usual expectations operator and here denotes fully rational expectations. In the following of the

paper, I will generalize it by assuming bEt, which instead indicates subjective (possibly non-rational)
expectations.
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The consumption index is of the Dixit-Stiglitz CES form

Cit �
�Z 1

0
cit(j)

��1
� dj

� �
��1

(2.2)

and the associated aggregate price index is

Pt �
�Z 1

0
pt(j)

1��dj

� 1
1��

(2.3)

where � > 1 represents the elasticity of substitution between di¤erentiated goods. Optimal con-

sumption of good j is given by cit(j) = Cit (pt(j)=Pt)
��, where pt(j) is the price of good j at date

t. Financial markets are complete so that risks are e¢ ciently shared and households face identical

intertemporal budget constraints.4 I assume that the government has access to lump sum taxes

and implements a Ricardian �scal policy. I can therefore ignore the speci�c details of �scal policy,

since it does not in�uence aggregate economic variables in the model.

With habit formation, the �rst order conditions for the optimal choice of consumption imply

�t = Uc (CT � �CT�1; �T )� ��Et
�
Uc
�
CT+1 � �CT ; �T+1

��
(2.4)

where the marginal utility of additional real income in period t, �t, is no longer simply equal to the

marginal utility of consumption in that period. The marginal utility of income still satis�es

�t = �Et [�t+1(1 + it)Pt=Pt+1] (2.5)

where it denotes riskless one-period nominal interest rates. Substituting (2:4) in (2:5) and taking

a log-linear approximation of the implied Euler equation, I derive:

eCt = Et eCt+1 � (1� ��)� �bit � Etb�t+1�+ gt � Etgt+1 (2.6)

where eCt = bCt � � bCt�1 � ��Et h bCt+1 � � bCti (2.7)

and where � � �Uc
(CUcc)

> 0 represents the elasticity of intertemporal substitution of consumption

in the absence of habit formation, gt � �Uc��t
Uc

represents exogenous preference shocks, and �̂ �on

variables Ct, it and �t denotes log-deviations of consumption, nominal interest rates, and in�ation

from their steady-state values.5 Boivin and Giannoni (2003) refer to [(1� ��)�] as the �pseudo-

elasticity of intertemporal substitution�. Using the equilibrium relationship Ct = Yt, where Yt

4I can therefore omit the superscript i on Cit .
5I shall omit �̂ � to indicate deviations from steady-state in the following of the paper, in order to save some

notation.
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represents aggregate income in period t, and re-expressing in terms of the output gap xt � Yt�Y nt
(Y nt is the natural rate of output, i.e. the equilibrium level of output under �exible prices) yields

ext = Etext+1 � (1� ��)� [it � Et�t+1 � rnt ] (2.8)

where ext � (xt � �xt�1)� ��Et (xt+1 � �xt) (2.9)

and rnT � [(1� ��)�]�1
��
Y nt+1 � gt+1

�
� (Y nt � gt)

�
is the �exible-price equilibrium real interest

rate (the real interest rate in an equilibrium where xt = 0 at all times).

2.2. Optimal Price Setting. I assume a continuum of monopolistically competitive �rms. Fol-

lowing Calvo (1983), a fraction 0 < 1 � � < 1 of �rms are allowed to change their price in a

given period.6 The price of the remaining fraction � is adjusted according to the indexation rule

(proposed by Christiano, Eichenbaum and Evans 2005)

log pt(i) = log pt�1(i) + 
�t�1 (2.10)

where �rms that cannot set their price optimally in a given period simply index to lagged in�a-

tion. In�ation indexation has been also employed in Smets and Wouters (2003, 2004a,b), Altig

et al. (2004), and Giannoni and Woodford (2003), and such assumption enables them to improve

the empirical performance of their models. The parameter 0 � 
 � 1 represents the degree of

indexation to past in�ation. Christiano, Eichenbaum and Evans (2005) assumed 
 = 1, meaning

full indexation.

Firm i is a monopolistic supplier of good i, which is produced according to the production

technology yt(i) = Atf (ht(i)), where At is an exogenous technology shock, ht(i) is labor input and

the function f (�) is increasing and concave. Capital is assumed to be �xed, leaving labor as the

only variable factor of production. Firms face a common demand curve yt(i) = Yt

�
pt(i)
Pt

���
for

their product, where Yt =
�Z 1

0
yt(i)

(��1)
� di

� �
��1

is the aggregate output and Pt the aggregate price

index, both taken as given. All �rms face the same decision problem and, if they are allowed to

change their price, they set the common price p�t . It follows that the aggregate price index evolves

according to

Pt =

"
�

�
Pt�1

�
Pt�1
Pt�2

�
�1��
+ (1� �)p�1��t

# 1
1��

(2.11)

6Although unrealistic, the assumption of Calvo price-setting is common in models of monetary policy analysis

since it permits to solve the model without tracking the distribution of prices across �rms.
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Firms set p�t to maximize the expected present discounted value of future pro�ts:

Et

( 1X
T=t

�T�tQt;T

�
�T

�
p�t (i)

�
PT�1
Pt�1

�
��)
(2.12)

where Qt;T = �T�t PtPT
�T
�t
is the stochastic discount factor, and �T (�) denotes period T �rm�s

nominal pro�ts given by

�T (p) = p�t (i)

�
PT�1
Pt�1

�

YT

0@p�t (i)
�
PT�1
Pt�1

�

PT

1A���wt(i)f�1
0B@ YT
AT

0@p�t (i)
�
PT�1
Pt�1

�

PT

1A��
1CA (2.13)

where wt (i) represents the wage for labor supplied in the production of good i. Firms discount

future pro�ts at rate �, since they can expect the optimal price chosen at date t to apply in period

T with probability �T�t, and at the discount factor Qt;T . The �rm chooses fp�t (i)g to maximize

the �ux of pro�ts (2:12), for given fYT ; PT ; wT (j); AT ; Qt;T g for T � t and j 2 [0; 1].

Log-linearization of the �rst-order condition7 for this problem yields

bp�t (i) = Et

1X
T=t

(��)T�t
�
1� ��
1 + !�

�
!bYT � b�T + vy�

vy
�T

�
+ �� (b�T+1 � 
b�T )� (2.14)

where bp�t � log (p�t =Pt) and ! � vyyY =vy is the elasticity of the marginal disutility of producing

output with respect to an increase in output.

From a log-linear approximation of the aggregate price index (2:11), notice that bp�t = �
(1��) (b�t � 
b�t�1),

which plugged in the previous expression gives the following law of motion for in�ation

e�t = �p

h
!xt + [(1� ��)�]�1 exti+ �Ete�t+1 + ut (2.15)

where e�t � �t � 
�t�1 (2.16)

ext � (xt � �xt�1)� ��E (xt+1 � �xt)
�p =

(1� �) (1� ��)
� (1 + !�)

(2.17)

and where ut � vy�
vy�p

�t represents an exogenous aggregate supply shock. As seen, xt represents the

theoretical output gap, i.e. the deviation of actual output from the natural rate of output that

would prevail under �exible prices. None of the commonly employed measures of the output gap are

7Consistently with most of the New Keynesian literature, I log-linearize around a zero steady-state for in�ation. I

am therefore abstracting from the complications arising from log-linearizing around a positive in�ation steady-state.

For an account of the possible implications of this choice, see Kiley (2004) and Ascari (2004). Indexation permits to

avoid the problems due to trend in�ation, as shown in the appendix A of Ascari (2004). The present paper, however,

works with partial indexation, remaining partly vulnerable to such problems.
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totally appropriate as empirical proxies of the deviations of output from that theoretical concept.

In the empirical part of the paper I will use the Congressional Budget O¢ ce (CBO)�s estimate

of potential output.8 Notice that any deviation of the empirical output gap from the theoretical

output gap will materialize in the supply shock ut.

3. A Simple Model with Learning and Structural Sources of Persistence

3.1. Aggregate Dynamics. In this section, I follow a number of papers in the adaptive learning

literature,9 starting from the derived linearized equations under rational expectations (eq. (2:8) and

(2:15)) and replacing the assumption of fully rational expectations with subjective expectations.10

The aggregate dynamics for output and in�ation is given by the following speci�cation, nesting

learning and mechanical sources of persistence

ext = bEtext+1 � (1� ��)� hit � bEt�t+1 � rnt i (3.1)

e�t = �p

h
!xt + [(1� ��)�]�1 exti+ � bEte�t+1 + ut (3.2)

where

e�t � �t � 
�t�1 (3.3)

ext � (xt � �xt�1)� �� bE (xt+1 � �xt) : (3.4)

Here bEt indicates subjective (possibly non-rational) expectations. As under rational expecta-
tions, current output gap depends on lagged and expected one-period and two-period ahead output

gaps, and on the ex-ante real interest rate. Consistently with Boivin and Giannoni (2003), Gi-

annoni and Woodford (2003), and Woodford (2003), it is more appropriate here to interpret �

broadly as the degree of habit formation in private expenditure, rather than simply in non-durable

consumption. Under this interpretation, habits would also capture the persistence in investment,

serving as a proxy for adjustment costs. Current in�ation depends on lagged and one-period ahead

8Alternatives in the literature consist of employing detrended output, through Hodrick-Prescott �lter or removing

some linear or quadratic trend, as measures of the output gap. Another possibility would consist of �nding the

real-time potential output through �ltering techniques.
9Evans and Honkapohja (2001, 2003a,b), Bullard and Mitra (2002), Bullard and Eusepi (2005), and Williams

(2003) are some examples.
10For a di¤erent approach of considering learning, see Preston (2003), where learning is introduced directly from

the primitive assumptions of multi-period decision problems. I shall also introduce learning as in Preston (2003) later

in the paper, illustrating the model and the implied empirical results. For a full derivation of the model with learning

from microfoundations, also incorporating habits in consumption and price indexation, see Appendix A.
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in�ation, and on current, lagged and one-period-ahead output gap. With habit formation, the log

marginal utility of real income entering the Phillips curve is written, in fact, as a linear function ofext rather than as a linear function of xt (which was the case for � = 0).11 Notice that I could have
derived similar equations for output and in�ation dynamics, only with di¤erent restrictions on the

parameters, assuming the existence of rule-of-thumb behavior (Gali�and Gertler 1999, Amato and

Laubach 2003), instead of habits and indexation. The results in the following of the paper are not

dependent on this choice. The presented framework nests the cases of rational expectations, wherebEt = Et (I will explain this case later in more details), no habits (for � = 0), and no indexation

(for 
 = 0):

I introduce monetary policy in the model and assume that it can be described by the following

Taylor rule with partial adjustment

it = �it�1 + (1� �) [ ��t +  xxt] + "t (3.5)

where � denotes the degree of interest-rate smoothing,  � and  x are the feedback coe¢ cients to

in�ation and output gap, and the monetary policy shock "t accounts for unanticipated deviations

from the systematic monetary policy rule. A similar rule implies that monetary policy has been

constant over the sample. The stability of monetary policy over the pre-79 and post-82 periods is

still controversial. An in�uential paper by Clarida, Gali�and Gertler (2000) shows that monetary

policy has been passive and destabilizing in the U.S. before 1979, active and stabilizing after 1982

(along these lines are also Boivin and Giannoni 2003, Cogley and Sargent 2005a, and Lubik and

Schorfheide 2004). Other papers, such as Sims (2001) and Sims and Zha (2004) �nd instead no

evidence of shifts in the systematic part of monetary policy.12 Assuming that monetary policy can

be expressed as a simple constant Taylor rule is probably overly simplistic. But for the purpose of

estimation of the model with learning it may represent a �rst useful approximation. A simple rule

is also used in recent papers estimating rational expectations DSGE models, such as Smets and

Wouters (2003, 2004a).13 In the following of the paper, however, I will also allow for a time-varying

monetary policy rule as a robustness check. An alternative would consist of introducing optimal

monetary policy. Under learning, however, it is important to specify the degree of knowledge the

11When � = 0, the aggregate dynamics of in�ation (with indexation) would be given by e�t = �p
�
! + ��1

�
xt +

� bEte�t+1 + ut, which is the case considered in Milani (2004).
12In Sims and Zha (2004), the best �tting model is one with no changes in the coe¢ cients and only changes in

the variances of the structural disturbances.
13They introduce a time-varying target for in�ation in the policy rule. I will also estimate a rule of this kind in

the next sections.
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central bank has about private sector expectations. The central bank might be assumed to have

perfect knowledge about the agents�learning rules or might instead formulate optimal policy under

the mistaken perception that agents have rational expectations. The resulting optimal policy would

be di¤erent depending on the various assumptions. In this paper, I abstract from these possibilities

and instead use a rule that has been shown to �t well in previous empirical work.

I assume that the natural real interest rate and the cost-push shocks evolve according to uni-

variate AR(1) processes

rnt = �rrnt�1 + �
r
t (3.6)

ut = �uut�1 + �
u
t (3.7)

where �rt s iid
�
0; �2r

�
, �ut s iid

�
0; �2u

�
.

3.2. Expectations Formation: Constant-Gain Learning. As made clear by eq. (3:1) and

(3:2), agents need to form forecasts of future macroeconomic conditions. Following recent learning

literature, I assume that agents behave as econometricians, employing an economic model and

forming expectations from that model.

Agents estimate

Zt = at + btZt�1 + ctut + dtr
n
t + "t (3.8)

using variables that appear in the Minimum State Variable (MSV) solution of the system under

rational expectations (de�ning Zt � [�t; xt; it]0 and where at; bt; ct; dt are coe¢ cient vectors and ma-

trices of appropriate dimensions).14 Therefore, the agents employ a correct model of the economy,

but they do not have knowledge about the relevant model parameters (as they would have under

rational expectations).15 They use historical data to learn those parameters over time. Expression

(3:8) represents the �Perceived Law of Motion�or PLM of the agents. As additional data be-

come available in subsequent periods, agents update their estimates of the coe¢ cients (at; bt; ct; dt)

according to the constant-gain learning (CGL) formula

b�t = b�t�1 + gR�1t�1Xt(Zt �X 0
t
b�t�1) (3.9)

Rt = Rt�1 + g(Xt�1X
0
t�1 �Rt�1) (3.10)

14See McCallum (1999) for a presentation of the MSV criterion to choose the �fundamental�solution of linear RE

systems.
15In the estimation, I will assume that agents recognize that the true mean of the variables is zero (at = 0).

Allowing agents to learn also the constant term over time has no e¤ects on the results.
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where b�t describes the updating of the learning rule coe¢ cients, b�t = (a0t; vec(bt; ct; dt)
0)0, and

Rt denotes the matrix of second moments of the stacked regressors Xt � f1; Zt�1; ut; rnt g
t�1
0 . The

constant gain is expressed by the parameter g and, compared with the recursive least squares (RLS)

gain (equal to 1=t), represents a simple way to model learning of an agent concerned about potential

structural breaks at unknown dates.16 CGL in fact gives more weight to more recent observations (it

is a variant of what is more generally called bounded-memory learning and, for clarity, it mimics the

situation of an econometrician running rolling-window regressions). Di¤erently from RLS learning

the economy will not converge to the Rational Expectations Equilibrium (REE), but it might only

converge to an ergodic distribution around it. A larger value of the gain coe¢ cient g would imply

faster learning of potential shifts, but would also lead to higher volatility around the steady state.

The assumption that agents form expectations using only variables that appear in the MSV so-

lution is not entirely realistic. This assumption facilitates comparison with the previous theoretical

literature that commonly employs it. An alternative would be to allow agents to estimate simple

unrestricted VARs and form expectations from those.

Using their PLM and the updated parameter estimates, agents form expectations for any horizon

T > t as

bEtZT = (I5 � bt�1)�1(I5 � bT�tt�1 )at�1 + b
T�t
t�1EtZt + (3.11)

�uut(�uI5 � bt�1)�1(�T�tu I5 � bT�tt�1 )ct�1 + �rr
n
t (�rI5 � bt�1)�1(�T�tr I5 � bT�tt�1 )dt�1

where I5 denotes a 5 � 5 identity matrix. The model information assumptions are as follows: in

period t, agents observe the values of the endogenous variables in t� 1, they observe the values of

the shocks in t, and they use the estimated parameters in t � 1 (which they have derived from a

regression of endogenous variables in t�1 on the endogenous variables in t�2 and observed shocks

in t� 1), to form expectations for future periods t+ 1 and t+ 2.17

In each period t, agents use an econometric model to form their expectations about future vari-

ables, but they do not take into account their subsequent updating in periods T > t. Therefore,

16Constant-gain learning has been used in various recent empirical studies, such as Orphanides and Williams

(2003a,b, 2004, 2005), Williams (2003), and Primiceri (2003), among others. Orphanides and Williams also refer to

it as perpetual learning.

17The information assumptions are similar to Evans and Honkapohja (2003a,b) and Preston (2003).
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they act as adaptive decision-makers, in accordance with what Kreps (1998) de�nes as an antic-

ipated utility model.18 This is a standard assumption in the adaptive learning literature and it

is discussed in more length in Cogley and Sargent (2004).19 An appealing characteristics of the

learning framework presented here is that it nests rational expectations as a special limiting case,

i.e. the case for g! 0. It would be therefore interesting to examine whether a strictly positive gain

leads to improvements in explaining the data. Also the framework nests several possible learning

cases characterized by the parameter g, according to which agents are more or less willing to update

their expectations based on new information.

Furthermore, as discussed by Orphanides and Williams (2003b), modeling agents�learning per-

mits to accommodate the Lucas critique, since agents�expectations endogenously adjust to changes

in policy. This is not entirely true for structural models in the case that all the dynamics come

from the frictions needed to insert lags in the model equations.

Branch and Evans (2005) show that constant-gain learning models �t the forecasts from surveys

better than alternative methods for both in�ation and output growth. In particular, constant-gain

learning models dominate models with optimal constant gain (obtained by minimizing the forecasts�

Mean Square Error), with Kalman Filter, and with Recursive Least Squares learning. Their results

therefore provide supportive evidence of constant-gain learning as a model of actual expectations

formation.

To summarize, the model economy is represented by the aggregate dynamics equations (3:1),

(3:2), monetary policy rule (3:5), shock processes (3:6), (3:7), and expectations formation expres-

sions (3:9), (3:10) and (3:11).

3.3. State-Space Form. Substituting the expectations formed as in (3:11) into (3:1) and (3:2)

yields the state-space form

�t = At + Ft�t�1 +Gtwt (3.12)

Yt = H�t

18According to an anticipated utility model, each period agents maximize their expected utility taking their beliefs

and the model as constant, although the model is recursively estimated. When more data become available, agents

update their beliefs and use this new knowledge to maximize expected utility. Agents are therefore learning, but they

are not involved in active experimentation as a fully rational behavior would imply.
19As Cogley and Sargent (2004) discuss, a full Bayesian procedure in many macroeconomic models would be too

complicated to be implemented. Anticipated utility models can be therefore thought as a useful approximation to more

complex decision problems. They also show that the anticipated utility model provides an excellent approximation

of the Bayesian solution in simple examples (and it is more successful than a rational expectations approximation).
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where �t = [xt; �t; it; ut; r
n
t ], wt � N(0; Q), H is a matrix of zeros and ones just selecting vari-

ables from �t,
20 and At, Ft, Gt are time-varying matrices of coe¢ cients, which are convolutions

of structural parameters of the economy and agents beliefs. Expression (3:12) is the implied

�Actual Law of Motion�, orALM, of the economy (and it is di¤erent from, although depending

on, the agents�PLM). I shall estimate the system by Bayesian methods. The scope will be to test

whether persistence is due to structural characteristics, such as habits and indexation, or instead

to learning behavior by �rms and consumers.

4. Bayesian Estimation

I estimate the system using likelihood-based Bayesian methods to �t the series for output gap,

in�ation and the nominal interest rate. A number of recent papers in empirical macroeconomics

have employed Bayesian methods to estimate DSGE models of the economy. DeJong, Ingram, and

Whiteman (2000) illustrated Bayesian estimation of Real Business Cycles models using importance

sampling, while Otrok (2001) applied the Metropolis-Hastings algorithm. Schorfheide (2005), Lubik

and Schorfheide (2003, 2004), Smets and Wouters (2003, 2004, 2005), Rabanal and Rubio-Ramirez

(2003), Laforte (2003), Gali�and Rabanal (2004), and Justiniano and Preston (2004) are all recent

examples of papers exploiting Bayesian methods to estimate DSGE models. Smets and Wouters

(2003), in particular, provide a �rst example of an estimated structural model that succeeds to

�t as well as an a-theoretic Bayesian VAR.21 This paper follows a similar approach in estimation.

While the cited papers work with traditional rational expectations models, I provide an example

of estimation of a simple DSGE model with non-fully rational expectations and learning. A simple

empirical model with learning is presented and estimated in Sargent, Williams and Zha (2004).22

As shown in Fernandez-Villaverde and Rubio-Ramirez (2004a), Bayesian methods also have

an appealing classical interpretation: Bayesian point estimates converge asymptotically to their

pseudo-true values and the best model according to the Kullback-Leibler measure will be also the

20Because of the well-known stochastic singularity of standard RE systems, where there are more endogenous

variables than shocks (5 vs. 3 here), I follow the common approach of computing the likelihood only on a subset of

the variables (xt; �t; it in this case).
21All these papers work with linearized models. Fernandez-Villaverde and Rubio-Ramirez (2004b) show how to

estimate the nonlinear representation of a DSGE model. The computational burden however dramatically increases

and it is likely to become unbearable, for the moment, in a model that also contains learning.
22They estimate a model where the monetary authority updates its beliefs about the Phillips curve and show

that the rise and fall of post-war US in�ation can be attributed to the interaction between policymaker�s beliefs and

realized economic shocks.
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model obtaining highest posterior probability in Bayesian model comparison.23 In their empirical

exercise, they also show that Bayesian estimates outperform Maximum Likelihood estimates in

small samples.

Using the model in state-space form in (3:12), I estimate the deep parameters and the main

learning parameter, the constant gain, jointly in the system. I can evaluate the likelihood function

using the Kalman Filter. To derive the parameter estimates, I generate draws from the posterior

distribution using the Metropolis algorithm.

The structural parameters of the model are collected in the parameter vector �:

� =
�
�; �; �; 
; �p; !; �; ��; �x; �r; �u; �"; �r; �u;g

	
(4.1)

where �", �r, �u are the standard deviations of the shocks to monetary policy, aggregate demand,

and aggregate supply.

The parameter vector � therefore includes the structural parameters describing the dynamics of

the economy, the policy rule coe¢ cients, the standard deviations of the shocks, and the constant

gain coe¢ cient g. In particular, the estimate of the constant gain coe¢ cient is crucial, since despite

its increasing use in monetary policy studies, estimates of its value are missing in the literature.

Ireland (2003) highlights the necessity of what he de�nes an �irrational expectations econometrics�

and suggests estimating the gain using time series data, also to assess whether a deviation from

the rational expectations value (g ! 0) helps improving the model�s �t. This is exactly what is

done in the paper. The value to assign to g constitutes an important degree of freedom for the

researcher and one�s results may heavily depend on its choice. Indeed, Milani (2004) shows how

the estimated degree of structural persistence in in�ation strongly depends on the assumed speed

of learning by the private sector. Similarly, Orphanides and Williams (2004), using a smaller range

of possible gain values, illustrate how persistence and volatility vary with the gain. They show that

both persistence and volatility increase with larger gain coe¢ cients (being at their lowest values

under rational expectations). This paper hence provides an estimate of g to �ll the gap in the

literature.24 Notice that the structural parameters and the learning speed are jointly estimated in

the system. This is di¤erent from the estimation performed in Milani (2004), where the estimation

23This is attractive, since from decision theory the Kullback-Leibler measure represents the criterion that an agent

should rationally use to choose between competing models (see Fernandez-Villaverde and Rubio-Ramirez 2004a and

references therein).
24Orphanides and Williams (2003b, 2005) estimate the constant-gain coe¢ cient as the gain the minimizes the

deviation of expectations in their model from the Survey of Professional Forecasters�expectations series.
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of structural parameters was valid for a given estimated learning rule (that paper used a two-step

estimation procedure).25

All the information about the parameters is summarized by the posterior distribution, obtained

by Bayes Theorem

p
�
� j Y T

�
=
p
�
Y T j �

�
p (�)

p (Y T )
(4.2)

where p
�
Y T j �

�
is the likelihood function, p (�) the prior for the parameters, and Y T = [y1; :::; yT ]

0

collects the data histories.

The model is �tted to data on output gap, in�ation, and nominal interest rates. The data are

quarterly for the period 1960:I to 2004:II. In�ation is de�ned as the annualized quarterly rate of

change of the GDP Implicit Price De�ator, output gap as the log di¤erence between GDP and

Potential GDP (CBO estimate),26 and I use the federal funds rate as the nominal interest rate.

The series were obtained from FRED, the database of the Federal Reserve Bank of Saint Louis. I

run 300; 000 draws for the Markov Chain, discarding the �rst 20% as initial burn-in.

4.1. Specifying the Prior Distribution. First, I need to specify a prior distribution over the

structural parameters collected in �. Table 1 presents information about the priors.

Insert Table 1 about here

Priors are assumed to be independent. The habit and indexation parameters � and 
 are assumed

to follow Uniform distributions in the interval [0; 1]. I have also experimented Beta and Normal

prior distributions for those parameters. The discount factor � follows a Beta distributions, but

with a really tight probability around 0:99. I assume Uniform distributions for all the autoregressive

parameters (�, �r, �u) that should assume values in the interval [0; 1). The intertemporal elasticity

of substitution coe¢ cient � follows a Gamma distribution with mean 0:125 and standard devia-

tion 0:09. I choose Normal distributions for the other structural parameters and inverse gamma

distributions for the standard deviations of the shocks. The prior for ! is centered at the value

estimated by Giannoni and Woodford (2003), with a rather large variance. For the constant-gain

coe¢ cient, I assume a Gamma distribution that guarantees it assumes values only in R+: the gain

25Ideally, one would want to estimate also the initial values and the initial variance-covariance matrix of agents�

beliefs jointly in the system. Here, however, I avoid this complication to keep the number of estimated parameters

tractable. I start by �xing the initial beliefs and the initial variances. Later in the paper, I will also use estimated

initial beliefs, calculated from pre-sample data.
26As discussed in the previous section, deviations of the empirical output gap from the theoretically relevant gap

will appear in the supply shock ut.
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has prior mean 0:031 and prior standard deviation 0:022. Since I do not have strong prior beliefs

for this coe¢ cient, lacking estimates in previous literature, I shall also check, later in the paper,

the results under a more di¤use prior distribution, assuming for example a Uniform distribution in

the interval [0; 0:3].

4.2. Metropolis-Hastings Algorithm. To generate draws from the posterior distribution of �

using the Metropolis-Hastings algorithm, I need to evaluate the likelihood function p
�
Y T j �

�
at

each iteration. Having expressed the model as a linear Gaussian system in (3:12), I can easily com-

pute the likelihood recursively with the Kalman Filter. The details of the procedure are illustrated

in the appendix.

I obtain a Markov Chain f�1; �2; :::; �Dg of parameter values, whereD represents the total number

of draws (D = 300; 000 in the paper). Given this Markov Chain and a function of interest g (�), it

is possible to prove that b� = 1
D

PD
j=1 g (�j) converges almost surely to � = E [g (�)] as D !1.

Application of a Central Limit Theorem implies
p
D (b�� �) D�! N

�
0; �2�

�
. To compute the

numerical standard errors �� of the parameter estimates, however, I need to take into account

the autocorrelation of the draws (since the Markov Chain does not produce iid draws). I use the

method suggested by Geweke (1999) of estimating the standard error as
�
1
D
cSg (0)� 12 , where cSg (0)

represents the spectral density of function g (�) evaluated at the origin.27

5. Some (Non-)Rational Expectations Econometrics: Empirical Results

5.1. Model with Learning. I present the results of the estimation of the model with learning in

Table 2.

Insert Table 2 about here

The degree of habit formation in private expenditures, measured by the parameter �, equals

0:117. The estimated degree of in�ation indexation 
 equals 0:03. The reported 95% asymmetric

posterior probability intervals indicate that the estimates are unlikely to be higher than 0:3 for

habits and 0:1 for indexation. Habits and indexation are typically essential features in rational

expectations models to match the persistence in the data and to improve �t. When learning replaces

the assumption of fully rational expectations, the importance of habits and indexation drops to

values close to zero. Mechanical sources of endogenous persistence appear no longer essential for

27Due to the high number of draws in the estimation of the learning and rational expectations models, the

numerical standard errors, indicating the accuracy of the Monte Carlo approximation, are all found in the range 0:02

or lower.
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the empirical performance of DSGE models. The result suggests that learning is able to generate

the necessary persistence in the economy, leaving no role for those additional features.

The other parameters are estimated at realistic values. The intertemporal elasticity of substitu-

tion (� in the absence of habits) equals 0:748. The monetary policy rule shows a sizeable degree of

interest-rate smoothing (� = 0:914), a feedback coe¢ cient to in�ation equal 1:484 and to the output

gap equal 0:801. From the estimate of �p, I can calculate the implied degree of price stickiness, i.e.

the Calvo parameter �. The implied � equals 0:709,28 which indicates that �rms re-optimize their

prices every 3:44 quarters.

A central coe¢ cient in my estimation is represented by the constant gain. This paper represents

the �rst attempt to estimate the gain jointly with the rest of the parameters of the economy. The

posterior mean estimate for the gain equals 0:0183. Such a value implies that private agents are

learning rather slowly. The estimated value is not too dissimilar from values chosen from calibration

in previous studies (often working with gains in the interval 0:015 � 0:03) and from what found

by Orphanides and Williams (2003b, 2004), exploiting data on expectations from the Survey of

Professional Forecasters.29 To facilitate intuition, the gain can be interpreted as an indication of

how many past observations agents use to form their expectations. A gain of 0:0183 indicates that

agents make use of roughly 13�14 years of data (54: 6 quarters). Also, looking at expressions (3:9)

and (3:10), it can be noticed that with a gain of that size only a small fraction of new information

is used to update the previous period coe¢ cients�estimates.

Figure 1 shows the evolution of agents�beliefs over the sample.

Insert Figure 1 about here

Coe¢ cient b22 in the graph represents the evolution of agents�beliefs about the persistence of

in�ation (the autoregressive parameter in their learning rule). Agents start with a low perceived

persistence of in�ation during the 1960s, but they revise their beliefs at the end of the 1970s and

at the beginning of the 1980s. The perceived persistence drops later in the 1980s, increasing again

in the second half of the 1990s. A similar dynamics, but with substantially larger autoregressive

coe¢ cients, is found in Milani (2004) in a related paper about in�ation inertia, and in Orphanides

and Williams (2003b). Coe¢ cient b21 instead indicates the estimated sensitivity of in�ation to the

output gap. The �gure shows that in the 1970s the sensitivity was high, but it decreased in the

28The value is computed using the estimated parameters and assuming � = 7:69.
29They found values of g in the range 0:01� 0:04 to perform better and they adopted g = 0:02 in their baseline

model.
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latest two decades. This result is consistent with the perception of a �atter Phillips curve in such

period. The �gure also reports the estimated 95% posterior probability interval of the evolving

beliefs. They show that the beliefs are tightly estimated (with uncertainty usually increasing in the

second half of the sample).

Figure 2 instead reports the evolution of agents�forecasts of in�ation compared with the realized

in�ation series.

Insert Figure 2 about here

From the �gure, prolonged periods of correlated errors in the forecasts of in�ation are apparent.

Private agents underestimated in�ation in the 1970s and, in particular, they were not successful

in predicting the �rst peak in 1974-75. They rapidly increased their in�ation forecasts in the sec-

ond part of the 1970s, maintaining them higher than realized in�ation during the �rst quarters of

Volcker�s disin�ation. The agents again repeatedly overestimated in�ation in the second part of

the 1990s, when in�ation remained low despite the booming economy. The dynamics of in�ation

expectations is consistent with actual expectations from surveys, in which private agents have typ-

ically underestimated in�ation when it was high and overestimated it when it was low. Explaining

long periods of persistent forecast errors is instead harder under rational expectations.

Turning to the methodological aspects of the estimation, notice that I have not restricted the

analysis to parameter spaces leading to convergence around the REE. An interesting extension

in the estimation would be to consider regions of the parameter space characterized by E-stability

(learnability of the REE) and E-instability, possibly extending to models with learning the approach

of Lubik and Schorfheide (2004), who showed how to deal with determinacy and indeterminacy

spaces in rational expectations models. This extension is beyond the scope of this paper though.

5.2. Model with Rational Expectations. In this section, I re-estimate the model under the

assumption of rational expectations. The model now consists of equations (2:8), (2:15), hence with

Et replacing bEt, together with (3:5), (3:6) and (3:7), and is similar to the system estimated by

Giannoni and Woodford (2003) and Boivin and Giannoni (2003), for example. In their empirical

exercise, they use an indirect estimation method, choosing parameters to minimize the distance

between the model�s implied impulse response functions and those obtained from a VAR. Working

with a closely related model, I compare my results to theirs. To avoid the discrepancies driven by the

di¤erent methods used in estimation rather than the assumed method of expectations formation, I

re-estimate the system with the same Bayesian procedure previously implemented for the learning
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case. This permits a more accurate comparison between the resulting estimates and allows me to

evaluate the relative models��t.

The log-linearized model under rational expectations can be written (following Sims (2002)) as

�0�t = �1�t�1 +	wt +��t (5.1)

where I have introduced the vector of expectational errors �t = zt � Et�1zt for any variable zt.

The model expressed as (5:1) has solution

�t = F�t�1 +Gwt +��

1X
j=1

�j�1f �wEt [wt+j ] (5.2)

where the last term drops out if wt is i.i.d. (as in this paper).

From expression (5:2),30 and again adding the observation equation Yt = H�t, I can estimate the

system by computing the likelihood through the Kalman Filter and using the Metropolis-Hastings

algorithm to draw from the posterior distribution. In the estimation, I abstract from the compli-

cations arising from estimating the model under both the determinacy and indeterminacy regions

as in Lubik and Schorfheide (2004). Here, consistently with the rest of the empirical literature

estimating DSGE models, I impose the restriction that the parameters lay within the determinacy

region. If the data were, instead, best described by parameters laying in the indeterminacy space,

the restrictions would lead to biased estimates. Only a small percentage of the draws (0:0187%),

however, fell in the indeterminacy region and were discarded.

The estimation results are reported in Table 3, together with the estimates found by Giannoni

and Woodford (2003).

Insert Table 3 about here

I estimate sizeable degrees of indexation in in�ation (
 = 0:885) and habit formation in con-

sumption (� = 0:911). Notice, however, that the autoregressive parameter in the cost-push shock

is now much lower (�u = 0:02) than it was under learning. This likely explains a lot of the increase

in the estimated indexation. In the next section, I will present another estimation of a learning

model (with in�nite-horizon learning) in which the degree of indexation falls, and it is coupled with

a low estimated autocorrelation of the cost-push shock. A large degree of habit formation and a

large autocorrelation of the exogenous shock are instead necessary in the output gap equation.

The estimates are not too far from those found by Giannoni and Woodford (2003).31 The

biggest di¤erence with their estimates is given by the pseudo-elasticity of intertemporal substitution

30Under RE, the matrices F and G are no longer time-varying.
31The samples do not coincide. They use a post-1982 sample in their estimation, while I use data from 1960 to

2004. The results reported correspond to the speci�cation with habits, indexation, and �exible wages, in their paper.
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parameter (denoted by '�1 = [(1� ��)�]), which also measures the sensitivity of output to changes

in the real interest rate. My estimate implies a lower sensitivity. The di¤erence probably arises

here from the di¤erent estimation methods: the impulse responses from a VAR show a substantial

response of the gap to a monetary shock. Their estimated parameter needs to match this response

and is therefore bigger ('�1 = 1: 50). Standard estimates of this parameter by other methods are

typically considerably lower (and mine equals '�1 = 0:26).

Again, from the estimated �p I can derive the implied price stickiness coe¢ cient �. I obtain

� = 0:922, which implies that �rms keep their prices �xed for more than 3 years. This degree of

price rigidity is unrealistic, but it often appears in estimated models. Therefore, when learning

replaces rational expectations also the implied price rigidity decreases toward values that are more

consistent with the microeconometric evidence.

The estimation results rea¢ rm what is commonly known: in rational expectations DSGE models,

additional sources of endogenous persistence are essential to match the inertial behavior of economic

variables and make the model �t.

5.2.1. Do We Really Need Mechanical Sources of Persistence? As shown in Table 3, Giannoni

and Woodford (2003), working with the same model of this paper but with rational expectations

instead of learning, estimate both � = 1 and 
 = 1, suggesting extremely high degrees of structural

persistence. Boivin and Giannoni (2003) also �nd � ' 1 and 
 = 1. Christiano, Eichenbaum, and

Evans (2004) and Altig, Christiano, Eichenbaum, and Linde�(2005) do not actually estimate 
, but

they �x it to 1, indicating full indexation; they estimate instead �, both obtaining a value of 0:65.

Smets and Wouters (2004) estimate on US data � = 0:69 and 
 = 0:66 in their pre-79 sample, and

� = 0:44 and 
 = 0:34 in the post-82 sample. Their estimates are somewhat lower than other papers,

but still surprisingly large if we consider that they are obtained in a rich model, incorporating,

besides habits, sticky prices, and indexation, also wage stickiness, capital formation, adjustment

costs, and several highly autocorrelated shocks.32 Dennis (2003) estimates a new-Keynesian model

with optimal monetary policy and �nds � ' 1 and 
 ' 0:9. A macroeconomic study about

the importance of habit formation in consumption (using time series on consumption rather than

output) is instead Fuhrer (2000b), who also obtains a strong role for habits (� = 0:8-0:9).33 Rabanal

32The variables they use are also di¤erent: they use a measure of in�ation that is detrended by a linear trend, for

example.
33The evidence of habit formation in consumption in microeconomic data is instead weaker. Dynan (2000), looking

at households�data from the PSID, �nd no evidence of habits.
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and Rubio-Ramirez (2003) instead compare di¤erent sticky-price models, estimating 
 = 0:76. All

those results point towards extremely high levels of structural persistence in the economy and are

common in current empirical studies.34 As discussed in the introduction, mechanical sources of

persistence are essential to make rational expectations models �t.

This paper has shown that estimated degrees of habit formation and in�ation indexation close

to 1 seem to hinge on the assumption of fully rational expectations. When this assumption is

weakened by allowing agents to learn over time, the degree of persistence due to structural features

of the economy (habits and indexation here but possibly others) drops to almost zero. This result

highlights the role of expectations and learning dynamics as su¢ cient sources of persistence in the

economy.35

5.3. Model Comparison: Learning vs. Rational Expectations. In this section, I compare

the posterior model probabilities of the speci�cations with learning and rational expectations. To

derive the posterior probabilities, I need to compute the models�marginal likelihoods. The ratio

of the probabilities between two competing models is called Bayes Factor. This Bayesian concept

is related to the classical Likelihood Ratio (LR). But as Fernandez-Villaverde and Rubio-Ramirez

(2004a) discuss, the Bayes Factor has some advantages over the likelihood ratio: there is no need

of an arbitrary choice of a signi�cance level and it avoids the problem of the LR test, which can

simultaneously accept or reject di¤erent nulls due to the asymmetry in the treatment of the di¤erent

hypothesis.

The posterior odds between the constant-gain learning (CGL) and rational expectations (RE)

models are computed as

pCGL;T
pRE;T

=

�
pCGL;0
pRE;0

� 
p
�
Y T j MCGL

�
p (Y T j MRE)

!
(5.3)

where the �rst term on the right-hand-side is the prior odds ratio and the second the Bayes Factor.36

34It is worth mentioning that some of the cited papers use di¤erent speci�cations of habits, therefore their estimated

reduced form equation for output is di¤erent.
35In a very di¤erent context, Gordon and Leeper (2003) are also able to derive persistence from expectations

(agents� expectations of future �scal policies in their case), suggesting that careful modeling of expectations as a

source of sluggishness in the economy might deserve further attention.
36Following the suggestion in Je¤reys (1961), the interpretations of the posterior odds are: pCGL;T

pRE;T
< 1 the null

of RE is supported; 1 < pCGL;T
pRE;T

< 3: 16 some evidence against the null; 3:16 < pCGL;T
pRE;T

< 10 substantial evidence

against the null; 10 < pCGL;T
pRE;T

< 33: 3 strong evidence against the null; 33:3 < pCGL;T
pRE;T

< 100 very strong evidence

against the null; pCGL;T
pRE;T

> 100 decisive evidence against the null.
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The posterior probabilities of each model instead derive from a simple application of Bayes�

Theorem and are given by

pi;T =
p
�
Y T j Mi

�
pi;0P

M p (Y T j Mi) pi;0
(5.4)

where i = CGL, RE andM represents the space of all possible models. The marginal data densities

p
�
Y T j Mi

�
are de�ned as

p
�
Y T j Mi

�
=

Z
L
�
�j j Y T ;Mi

�
p (�j j Mi) d�j (5.5)

I compute the marginal likelihood using Geweke�s (1999) Modi�ed Harmonic Mean approxima-

tion.37

I present the results in Table 4 and 5.

Insert Table 4 and 5 about here

Table 4 shows the model comparison between the models with learning and rational expecta-

tions, both allowing for habit formation and price indexation. Table 5 reports the results for the

comparison between the model with learning (and no habits and indexation) and the model with

rational expectations, incorporating habits and indexation.

The model with learning �ts better than the model with rational expectations. When both

models incorporate habits and indexation, the data favor the model with learning (the Bayes factor

equals 584 in favor of learning). More important is the case in which I instead compare the model

with learning, but no sources of mechanical persistence, with the model with rational expectations,

enriched with habit formation and in�ation indexation. I therefore re-estimate the model with

learning assuming � = 0 and 
 = 0. Not having habits and indexation, the MSV solution of the

system also changes: agents therefore use the following simpler Perceived Law of Motion as their

forecasting rule:

Zt = at + btit�1 + ctut + dtr
n
t + "t (5.6)

Now the Bayes factor assumes value 2:6764 � 106. According to Je¤reys (1961), such a value

represents decisive evidence of one model versus the other (a researcher should have prior probability

2:6764�106 higher for the rational expectations model to overturn the results). The posterior model

probabilities favor the speci�cation with learning over rational expectations with weight 1 versus

0.

A possible criticism of models with learning is that they entail more parameters to be estimated

than does the rational expectations alternative, for they require explicit modeling of expectations.

37See appendix for details.
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But under rational expectations researchers need to incorporate a number of additional extensions

to make the model �t satisfactorily. Under learning, such extensions might be avoided. The learning

model leads to substitution of coe¢ cients regarding frictions with coe¢ cients about agents�beliefs.

Modeling the updating of beliefs can be useful to understand particular historical episodes and

papers by Orphanides and Williams (2003a,b, 2005), Primiceri (2003), and Sargent, Williams and

Zha (2004) are all steps in that direction.

I have shown that learning is favored by the data in the context of a popular model of monetary

policy transmission. This �nding suggests that learning might similarly be important in more

complicated models à la Smets and Wouters (2003), for example, which still need several frictions

and exogenous shocks to �t the data. The importance of learning in such a rich model is not

demonstrated here, however, and I will verify it in future research. More general forms of habits

and indexation may be thought, for example, allowing additional lags to enter the model equations

(this is also true for agents�learning rules). All the possible cases can still be tested against learning

using the techniques described in this paper. Learning seems supported by the data, however,

because it allows to model parameter variation, maintaining parsimony of additional parameters.

6. Extensions

In this section, I consider a number of extensions to the baseline model and verify how the results

are a¤ected by di¤erent assumptions. First, I consider a di¤erent approach of introducing learning,

described in Preston (2003). Preston introduces learning from the primitives of a DSGE model and

shows that under subjective expectations the derived equations will be di¤erent from those under

rational expectations, for long-horizon expectations about macroeconomic variables also matter

(this approach has been labeled In�nite-Horizon learning by Honkapohja, Mitra and Evans 2003,

whereas they refer to the alternative approach as Euler Equation learning).38 I shall present the

model under In�nite-Horizon learning (leaving the full details of the derivation in the appendix)

and the implied empirical results.

An immediate possible criticism of the baseline model of the paper concerns the choice of a

constant monetary policy rule through the sample. Agents� beliefs might just incorporate the

e¤ect of the omitted policy variation in the model. Policy changes over the sample may generate

persistence in the system and learning might simply proxy for changing policy. Therefore, I re-

estimate the model for the post-1982 sample, which many economists would agree have represented

38For a discussion of the two alternative approaches, see Honkapohja, Mitra and Evans (2003), and Preston

(2004c).
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a single policy regime, characterized by an active monetary policy rule and low volatility shocks.

Then, I explicitly model time variation in policy introducing a time-varying in�ation target used

by the central bank, as in Smets and Wouters (2003). Other extensions concern the robustness of

the results to di¤erent priors, di¤erent gain coe¢ cients, and di¤erent initializations of the learning

algorithm.

6.1. In�nite-Horizon Learning. With learning introduced as in Preston (2003), long-horizon

expectations also matter. Here, I generalize Preston�s framework to include habit formation and

indexation. The model economy can be summarized39 as follows

ext = bEt 1X
T=t

�T�t [(1� �) exT+1 � (1� ��)�(iT � �T+1 � rnT )] (6.1)

e�t = bEt 1X
T=t

(��)T�t
h
�p

�
!xT + [(1� ��)�]�1 exT�+ (1� �)�e�T+1 + uT i (6.2)

it = �it�1 + (1� �) [���t + �xxt] + "t (6.3)

rnt = �rr
n
t�1 + �

r
t (6.4)

ut = �uut�1 + �
u
t (6.5)

where ext and e�t have the usual meaning. Notice that the implied dynamics for output gap and
in�ation are di¤erent from those derived under Euler Equation learning (equations (3:1) and (3:2)).

In this model, agents need to form forecasts of macroeconomic variables until the inde�nite future.

Also, as clear from equation (6:1), agents have more to learn about. They also need to learn future

interest rates, for example, while these forecasts were not required under Euler Equation learning.

As before, agents form forecasts for any horizon T > t as described in (3:11).

The paper provides the �rst empirical analysis of a model with In�nite-Horizon learning. The

results presented in Table 6 provide evidence similar to that from the baseline model. The degree of

habit formation is slightly higher (� = 0:17), but still small. Indexation is also higher (
 = 0:2), but

again much smaller than under rational expectations. In particular, with in�nite-horizon learning

the required small degree of indexation is paired with an almost nil estimated autocorrelation of

the supply shock (�u = 0:017). Therefore, learning permits to avoid the assumption of extremely

autocorrelated exogenous shocks and large degrees of additional sources of persistence. In this

model, I directly estimate �, the Calvo parameter indicating the degree of price stickiness. This

coe¢ cient is estimated to equal 0:138, at a value considerably lower than the estimates in the

39See complete derivation in the appendix.
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literature, which often fall in the range 0:8-0:9.40 My estimate suggests prices �xed for 1:16 quarters.

The estimate is therefore more consistent with the microeconomic evidence on price rigidity (for

example, Bils and Klenow 2004 �nd that �rms adjust prices every 1-2 quarters). The intertemporal

elasticity of substitution � is now strongly reduced (0:05), while the gain coe¢ cient becomes larger

(0:028).

The �t of the model with In�nite-Horizon learning, however, is not as good as the �t for the model

with Euler Equation learning. In�nite expectations in fact magnify the forecast errors of the agents,

leading to a less satisfactory empirical performance. Nonetheless, the success of the in�nite-horizon

model in attenuating the estimated autocorrelation of exogenous shocks and, most importantly,

the implied degree of price rigidity, reveals that additional research under this approach may be

valuable. In current work, I am more deeply comparing estimated models with Euler Equation and

In�nite-Horizon learning.

Insert Table 6 about here

6.2. Single Policy Regime: Post-1982 Sample. For the purposes of this paper, the assump-

tion of a constant monetary policy rule over the post-war sample would be troubling only if the

persistence in the economy was actually driven by the omitted evolving policy. I therefore esti-

mate the learning model for the Volcker-Greenspan sample 1982:IV-2004:II (I exclude the 1979-82

non-borrowed reserves targeting interval, which Sims and Zha (2004) �nd to represent a di¤erent

regime). Under this regime it is widely agreed that monetary policy has been active and stabilizing

(and well approximated by a Taylor rule with smoothing) and also macroeconomic volatility has

been considerably lower than in previous decades (researchers refer to this decline in volatility as

�The Great Moderation�). I present the results in Table 7.

Insert Table 7 about here

The results still do not indicate degrees of habit formation and indexation comparable to those

estimated under rational expectations (� = 0:13, 
 = 0:11). This would suggest that learning is not

simply capturing the omitted policy variation in the baseline model. Milani (2005) evaluates if the

result can be pushed further, by reconsidering the evidence in favor of regime shifts in U.S. monetary

policy in the post-war period. Clarida, Galì, and Gertler (2000), in a widely cited paper, �nd that

monetary policy evolved from passive (one that did not respond to in�ation with a coe¢ cient above

1) in the pre-1979 period to active in the post-1982 period. They also conclude that monetary policy

40A recent exception is Altig et al. (2004).
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was conducive to instability if embedded in a standard New-Keynesian model. In their analysis,

they rely on rational expectations. Milani (2005) �nds instead that if learning replaces rational

expectations, the estimation of the model with learning over the post-war sample provides evidence

of a far less drastic time variation in policy. The paper in fact shows that monetary policy has been

stabilizing over the whole sample. But in the pre-1979 period, the policymaker and private sector�s

expectations were misaligned because of a persistent underestimation of the degree of in�ation

persistence and a persistent overestimation of the slope of the Phillips curve. A similar result is

also more consistent with the evidence from a-theoretical VAR models (Sims and Zha 2004, for

example) that �nd weak or no time variation in the monetary policy coe¢ cients over time.

Looking at the estimates, it seems that the gain coe¢ cient has been lower in the post-1982

sample (g = 0:0058, indicating agents that use roughly 172 quarterly observations to form their

expectations).

6.3. Time-Varying In�ation Target. Suppose now that the central bank has adopted, for some

exogenous reasons, a time-varying in�ation target over the sample. Monetary policy can be ex-

pressed by the following rule

it = �it�1 + (1� �) [��t + �� (�t � ��t ) + �xxt] + "t (6.6)

where the in�ation target ��t evolves as an AR(1) process

��t = ����
�
t�1 + �

��
t (6.7)

A similar monetary policy rule with a time-varying target for in�ation has been used by Smets

and Wouters (2003) and Onatski and Williams (2004). The rest of the model is unchanged and

given by expressions (3:1), (3:2), (3:6), and (3:7).

Now the agents�Perceived Law of Motion becomes

Zt = at + btZt�1 + ctut + dtr
n
t + et�

�
t + "t (6.8)

in which they also react to the current period in�ation target. Table 7 reports the estimates.

The assumption of time-varying policy does not overturn the results. Again there is no evidence

of indexation in in�ation (
 = 0:035). I also �nd a positive but low degree of habit formation

(� = 0:146). The estimated gain is also higher and equal to 0:035.41

41Here the target becomes known to the agents when forming expectations (because it appears in the new MSV

solution) and therefore their learning can be faster than before.
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It is interesting to look at the evolution of the time-varying in�ation target over time. Figure 3

reports the federal funds rate (solid line) together with the estimated in�ation target (dashed line).

Insert Figure 3 about here

As expected, the target is low in the 1960s, it jumps and stays high during the 1970s (values

around 5-6%), and it remains low during the Volcker-Greenspan period (3-4%). More surprising

might be the behavior of the target in the last part of the sample, where it is increasing. This may

either indicate that the central bank has indeed adopted a higher target or that the target consistent

with a desired response of the economy has shifted. A possible explanation might be that concerns

about the zero-bound for interest rates in the last part of the sample led the Federal Reserve to

behave as if its in�ation target was higher (not responding to changes in the economy for fear to hit

the zero-bound). The target falls at the beginning of the 1980s during Volcker chairmanship, and

remains extremely low during the disin�ation. The target even hits zero in this period: real interest

rates were in fact raised a lot, despite the deep recession the U.S. economy was experiencing. The

behavior of the in�ation target series is similar to that found by Kozicki and Tinsley (2003).42

6.4. Di¤erent Priors. In the baseline case, I have assumed a Gamma prior distribution with

mean 0:031 for the crucial parameter g. But since no previous papers have attempted to estimate

the gain from time series data, it is hard to have a tight prior belief. In this section, I therefore

employ a more di¤use prior distribution, assuming that the gain follows a Uniform distribution in

the interval [0; 0:3]. The prior mean is now 0:15, substantially higher than the previous one, and

the prior standard deviation is 0:087. Table 7 again reports the results. Even with the more di¤use

prior, I obtain g = 0:01835, very similar to the value estimated in the baseline case. The other

estimated coe¢ cients are also absolutely similar.

6.5. Di¤erent Learning Speeds for Output and In�ation. So far, I have assumed that eco-

nomic agents are learning the law of motions of di¤erent variables at the same rate. In this section,

I relax this assumption: the learning process can occur at di¤erent speeds when it refers to output

or in�ation. Therefore I allow for two gain coe¢ cients in the estimation, which I denote gx for the

output gap and g� for in�ation.

The estimated values reported in table 7 demonstrate the robustness of the results to this exten-

sion. The estimated degrees of habits and indexation remain negligible (� = 0:103, 
 = 0:03). The

42In their model, they have also assumed a time-varying perceived target by private agents, di¤erent from the

time-varying target implemented by the central bank.
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gain concerning the output gap is estimated equal to 0:0161, the gain concerning in�ation instead

equals 0:0247. The data are therefore suggestive of faster learning in the dynamics of in�ation.

The other estimates are again substantially unchanged.

6.6. Estimated Initial Beliefs. I re-estimate the model under a di¤erent set of values to initialize

the learning algorithm. The initial beliefs are now estimated from pre-sample data (1954:III-

1959:IV). The implied habit formation and indexation parameters are small (� = 0:178, 
 = 0:02);

the gain coe¢ cient is now larger (g = 0:035).

7. Welfare and Policy Implications

Understanding the true sources of inertia in the economy is fundamental for policy. Whether the

persistence in the economy is driven by structural features or by the dynamics of agents�evolving

expectations has non-trivial implications for the optimal monetary policy. If the features that are

introduced in the models mainly to improve their empirical performance turn out to be a mistaken

representation of the economy, then the welfare analysis based on such microeconomic foundations

will be misleading.

7.1. Rational Expectations and Mechanical Sources of Persistence. Suppose expectations

are formed rationally and the inertial behavior of economic variables is induced by habit formation

in consumption and indexation in price-setting. Woodford (2003) shows that in a DSGE model

built on such microfoundations, a second-order Taylor expansion of the consumer utility function

implies the following welfare-based loss function to be minimized by the policy maker

Et

( 1X
T=t

�T�t
h
(�t � 
�t�1)2 + �x (xt � �xt�1 � x�) 2

i)
(7.1)

where �x =
�p�

(1���)��� , 0 � � � � is the smaller root of the quadratic equation �'(1 + ��2) =�
! + '(1 + ��2)

�
�,43 and x� > 0 is a function of microeconomic distortions a¤ecting steady-state

output, such as the degree of market power and the size of tax distortions in the economy. Therefore,

both habit formation and indexation a¤ect the implied loss function, in which now also lagged terms

for in�ation and output gap appear.44 The implied loss function, using the estimated parameters

43The parameter � is an increasing function of �, holding �xed the other parameters, and a decreasing function of

the marginal disutility of supplying output, measured by !, holding � �xed.
44When habits are not present, i.e. the case � = 0 and � = 0, it can be shown that �

�
converges to '

!+'
and

therefore �x =
�p(!+��1)

�
= �

�
.



EXPECTATIONS, LEARNING AND MACROECONOMIC PERSISTENCE 31

in the previous sections, has weights 
 = 0:885, �x = 0:00028 (assuming elasticity of substitution

among di¤erentiated goods � = 7:69, as in Giannoni and Woodford 2003) and � = 0:612.

An optimizing policymaker will seek to minimize such loss function subject to the sequence of

constraints given by the aggregate supply relation under rational expectations. The minimization

yields the �rst-order conditions

�t � 
�t�1 +  t �  t�1 = 0 (7.2)

�x (xt � �xt�1 � x�)� � t + �� t�1 = 0 (7.3)

where  t is the associated Lagrange multiplier. The optimal target criterion for commitment under

the timeless perspective is therefore given by

�t � 
�t�1 = �
�x
�
(xt � xt�1) (7.4)

The optimal target criterion depends on 
, the estimated degree of indexation, but it is una¤ected

by �, the estimated degree of habit persistence. Habit persistence however matters in the choice of

the instrument rate to achieve the preferred output and in�ation paths (and in the choice of the

feasible paths). The optimal instrument rate path is given by

it =  ��t�1 +  xxt�1 +  uut + r
n
t (7.5)

where  �,  x,  u are feedback coe¢ cients, the response to �t�1 in the optimal rule arises from

indexation, and the response to xt�1 arises from both habits and commitment.

7.2. Learning. On the other hand, if expectations and learning drive the persistence in the econ-

omy (assuming no role for habits and indexation) a welfare-based loss function derived in the same

way as before would be the more standard

Et

( 1X
T=t

�T�t
�
�2t + �x (xt � x�) 2

�)
(7.6)

where �x = �
� (which equals 0:035 using the estimated parameters in the learning speci�cation).

The constraints under which the policymaker optimizes would be di¤erent, now including one-

period and two-period ahead (or long-horizon) private sector expectations. The optimal target

criterion (under commitment) will be given by

�t = �
�x
�
(xt � xt�1) (7.7)
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Under learning, optimal policy depends on the assumed knowledge of the central bank about

agents�expectations formation. The central bank may be assumed to optimize under the assump-

tion that agents have rational expectations, employing the corresponding model to derive optimal

policy. As an alternative, the central bank may be assumed to have perfect knowledge about the

expectations formation mechanism of the agents, recognizing their learning rules.

Under the assumption of rational expectations, the optimal rule is given by a linear function of

the state variables and it does not depend on agents� learning. Preston (2004a,b) shows that if

the central bank misperceives the manner in which agents form expectations, the economy will be

more prone to instability.

Suppose instead that the central bank correctly understands agents�learning rules. Satisfaction

of the optimal target criterion in this case implies, following Evans and Honkapohja (2003a), the

optimal reaction function

it =
1

�

� bEtxt+1 � �x
�x + �2

xt�1 +

�
��

�x + �2
+ �

� bEt�t+1 + �

�x + �2
ut + �r

n
t

�
(7.8)

This reaction function implies satisfaction of the optimal target criterion independently from

the expectations held by the agents. It is apparent from the targeting rule that the central bank

needs to monitor and respond to private sector forecasts of future macroeconomic conditions. It is

also clear that learning and rational expectations lead to di¤erent optimal rules. The management

of expectations becomes a fundamental task for the central bank. Also, learning adds a further

argument for transparency.45 A transparent central bank facilitates the learning process of the

private sector and minimizes the �uctuations due to private expectations becoming uncoupled from

the objectives of policy.46 Orphanides and Williams (2003a) illustrate the bene�ts of adopting an

in�ation target that is known by the private sector.

But what is the cost of a policymaker misperceiving the expectations formation of the agents?

Does the optimal monetary policy obtained under the assumption of rational expectations perform

reasonably well when agents have instead imperfect knowledge? Here, I try to brie�y provide some

preliminary evidence. A full analysis of optimal policy under learning deserves further study and

will be a priority for future research.

Assume that the true structure of the economy is represented by the model with learning, as

described by equations (3:1) and (3:2), focusing for simplicity on the case of no habits and no

45See Faust and Svensson (2001) for a study of the importance of transparency and credibility in monetary policy.

46The role of central bank transparency when the private sector is learning is also discussed in Svensson (2003).
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indexation (� = 
 = 0).47 The policymaker therefore minimizes the more standard quadratic loss

function (7:6). First, I compute the optimal policy taking agents�learning into account (the poli-

cymaker correctly understands agents�expectations formation). The optimal policy under learning

implies a loss equal to 4:306,48 as shown in Table 8.

Insert Table 8 about here

Suppose now that the policymaker optimizes under the mistaken assumption that agents have

fully rational expectations.49 If the policymaker implements the optimal policy assuming rational

expectations, but the true representation of the economy is instead one with learning, the implied

loss will be equal to 7:150. The welfare cost arising from a misspeci�cation of the expectations

formation mechanism is substantial.

A recent study by Orphanides and Williams (2004) illustrates similar results. They �nd that

monetary policies that appear optimal under rational expectations perform poorly when knowledge

is instead imperfect.50 In addition, their work shows that policies that account for learning are not

too sensitive to potential misspeci�cations of the true learning mechanism. Schmitt-Grohe�and

Uribe (2004), instead, derive what they call �simple optimal operational� policy rules in a rich

rational expectations model (à la Christiano, Eichenbaum and Evans) with habits and indexation:

they �nd the optimality of a signi�cant degree of in�ation volatility. They point out that their

result is due to the indexation to past in�ation, when the assumption of zero long-run in�ation

is relaxed. Price indexation in fact limits price dispersion, rendering in�ation less costly. This

again remarks the important di¤erences arising from alternative modeling assumptions to induce

persistence in the macroeconomic variables and shows the potential counterintuitive results that can

emerge. It also highlights the potential importance of a comparison between optimal policies found

by Schmitt-Grohe�and Uribe (2004) in rich rational expectations models, and optimal policies with

learning.

47In this exercise, I use the previously estimated coe¢ cients for the model equations, and the optimal weights in

the loss function are those implied by the estimated coe¢ cients.

48Here the loss is calculated as the weighted sum of variances.

49The model coe¢ cients remain the same: the only di¤erence therefore lies in the assumed expectations formation.
50Orphanides and Williams (2004) point out that the poor performance of optimal policy under rational expecta-

tions derives from a relatively weaker response to in�ation, which creates a vicious circle where in�ation expectations

and actual in�ation reinforce each other. It is also interesting to notice that the optimal response to in�ation, in their

paper, appears to be an increasing function of the gain (at least in their assumed range).
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8. Conclusions and Future Directions

A long-standing issue in macroeconomics has been how to endogenously generate persistence in

the dynamics of economic variables to match stylized facts about aggregate data. Several extensions

in various sides of the economy are typically needed to induce inertia in conventional rational

expectations models of the monetary transmission mechanism.

This paper has presented a simple model with learning. Agents do not know the structural

parameters of the economy and use econometric models and historical data to infer parameters and

form expectations over time. Realistic levels of persistence arise in the model from the updating of

agents�beliefs. As a consequence, some extensions that are typically needed in rational expectations

models to match the observed inertia, such as habit formation in consumption or indexation to

past in�ation, become unsupported by the data under learning. Learning can therefore represent a

potential single mechanism, which can induce persistence without recurring to several modi�cations

in di¤erent sides of the economy. Moreover, learning helps to improve the �t of current monetary

DSGE models. The speci�cation with learning �ts signi�cantly better than the speci�cation with

rational expectations, according to the posterior model probabilities.

On the methodological side, the econometric approach of the paper has allowed joint estimation

of the main learning rule coe¢ cient (the constant gain), together with the structural parameters of

the economy. Since the results in models with learning may be heavily dependent on the choice of

the gain, this procedure avoids potentially important arbitrariness.

If learning is indeed an important characteristic of the structure of the economy, as suggested

by the paper�s empirical evidence, it will be necessary to derive optimal monetary policy taking

agents� learning behavior into account. The cost of misspecifying the level of agents�rationality

should be more deeply studied. An ideal optimal policy should be robust to small deviations

from fully rational expectations and to misperceptions of agents� learning rules. In the paper, I

�nd that policymakers may incur substantial costs from a misspeci�cation of the private sector

expectations formation (if policymakers assume agents have rational expectations, when instead

they are learning). Similarly, the interaction between policy and agents�beliefs, as well as among

optimal policy, learning speed, and persistence, requires further study. For example, recent papers

by Orphanides and Williams (2003b) and Gaspar and Vestin (2004) show that the interaction

between monetary policy and agents� learning about the economy may reduce the capacity of

policymakers to stabilize the economy, compared with a perfect knowledge environment. Branch,

Carlson, Evans, and McGough (2004) also study the interaction between optimal monetary policy
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and the anchoring of in�ation expectations to explain the decline in macroeconomic volatility after

the 1980s.

I have presented the results in a stylized model of the US economy. In future research, I shall

analyze if the results hold in richer models, such as those employed by Christiano, Eichenbaum

and Evans (2005), Altig et al. (2004), and Smets and Wouters (2003, 2004, 2005), which also

incorporate capital accumulation. The scope of the paper, however, was to propose learning as a

potential propagation mechanism in the economy and to start showing its relevance in a simple

monetary model, but which still embeds alternative sources of endogenous inertia.

Although not shown in the paper, learning might similarly represent an important propaga-

tion mechanism in other frameworks that currently lack endogenous persistence. Learning can

be exploited in the context of the New Open Economy Macroeconomics, for example. Also, the

empirical importance of evolving expectations and learning may be examined in a Real Business

Cycle model, revisiting an old Keynesian idea, to study how shocks to expectations compete with

technology shocks (Chari, Kehoe, and McGrattan 2004) and demand shocks (Gali�and Rabanal

2004) as driving forces of business cycles. All of these issues are on the research agenda.
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Appendix A. The Model under Infinite-Horizon Learning

In this appendix, I will derive the aggregate dynamics of the economy introducing learning

directly from the primitive assumptions, as in Preston (2003). This section generalizes Preston

(2003) incorporating also habit formation in consumption and in�ation indexation in price-setting.

In the model, agents know: 1) their own preferences; 2) the constraints they face; 3) how to solve

their optimization problems. They do not have any knowledge of other agents�preferences though.

Therefore, they are not able to infer the aggregate probability laws of the variables of interest, as

they would instead be under rational expectations.

A.1. Households�Optimal Consumption Decisions. Each household i still maximizes

bEit
( 1X
T=t

�T�t
�
U
�
CiT � �CiT�1; �T

�
�
Z 1

0
v(hiT (j); �T )dj

�)
(A.1)

where bEit indicates subjective expectations for household i. For simplicity, I assume homogeneous
beliefs across agents (although this is not known to agents, who do not have any information about

other agents�beliefs). As standard in the adaptive learning literature, the subjective expectations

of individual agents obey the law of iterated expectations, bEit bEit+sz = bEitz for any variable z.
I follow Preston (2003a) in assuming incomplete asset markets.51 Agents can use a single one-

period riskless asset to transfer wealth intertemporally. The �ow budget constraint is given by:

M i
t +B

i
t � (1 + imt�1)M i

t�1 + (1 + it�1)B
i
t�1 + PtY

i
t � Tt � PtCit (A.2)

where M i
t denotes end-of-period money holdings, B

i
t end-of-period riskless bond holdings, i

m
t and

it denote nominal interest rates on money and bonds, and Tt are lump sum taxes and transfers. Y it

is household�s real income in period t, given by
R 1
0

�
wt (j)h

i
t (j) + �t (j)

�
dj, where wt (j) represents

the wage received by the household for labor supplied in the production of good j and �t (j) the

share of pro�ts received from the sale of each �rm�s good j (households own an equal share of all

the �rms).

Substituting the �rst-order conditions as in(2:4) into (2:5), and taking a log-linear approximation

of the implied Euler equation, I obtain an expression like (2:6), only indexed by i now.

The intertemporal budget constraint (IBC) is of the form:

bEit 1X
T=t

�T�t bCiT = !it + bEit 1X
T=t

�T�t bY iT (A.3)

51This assumption limits the extent of information revelation from prices.
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where !it �
W i
t

PtY
is the share of nominal wealth (W i

t � (1 + it�1)Bit�1) as a fraction of nominal

steady-state income.

Solving (2:6) backwards, taking expectations and substituting into the modi�ed IBC52 yields

bCit = (1� �)!it +
�

1 + ��
bCit�1 + ��

1 + ��
bEit bCit+1 + bEit 1X

T=t

�T�t
�
(1� �)bY iT � �(1� �)

1 + ��
bCiT�1+

���(1� �)
1 + ��
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�
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(gT � gT+1)

�
(A.4)

Integrating over i, I obtain:

Ct =
�

1 + ��
Ct�1 +

��

1 + ��
bEtCt+1 + bEt 1X

T=t

�T�t
�
(1� �)YT �
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���(1� �)
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(A.5)

where I have used
R
i !

i
tdi = 0 from bond�s market clearing, Cit =

R
iC

i
tdi, Y

i
t =

R
i Y

i
t di, andbEt [�] � Ri bEit [�] di, the latter denoting average private-sector expectations. Using the equilibrium

relationship Ct = Yt, and re-expressing in terms of the output gap xt � Yt � Y nt yields

ext = bEt 1X
T=t

�T�t [(1� �)exT+1 � (1� ��)� (iT � �T+1 � rnT )] (A.6)

where ext � (xt � �xt�1)� �� bEt (xt+1 � �xt) (A.7)

and Y nt is the natural rate of output (the equilibrium level of output under �exible prices) and

rnT � [(1� ��)�]�1
��
Y nt+1 � gt+1

�
� (Y nt � gt)

�
is the �exible-price equilibrium real interest rate

(the real interest rate in an equilibrium where xt = 0 at all times). Notice that now current output

gap depends on lagged and expected one-period ahead output gap, plus on long-horizon forecasts

of future gaps, real interest rates and exogenous disturbances until the in�nite future.

A.2. Firms�Problem. Each �rm i maximizes the expected present discounted value of future

pro�ts bEit
( 1X
T=t

�T�tQt;T

�
�iT

�
p�t (i)

�
PT�1
Pt�1

�
��)
(A.8)

The �rst-order conditions for the problem are

bEit
8>>><>>>:
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52Found by substituting bCit = eCit + � bCit�1 + �� bEi
t

h bCit+1 � � bCiti into the IBC.
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where � = �=(��1) > 1, e�t is a vector of exogenous real disturbances incorporating both preference
shocks �t and technology shocks At, and where s (�) is �rm i�s real marginal cost function expressed

as

s
�
yt(i); YT ;e�T� �

 
vh
�
f�1 (yt(i)=At) ; �t

�
�tAt

!�
1

f 0 (f�1 (yt(i)=At))

�
(A.10)

Log-linearization of the �rst-order condition again yields

bp�t (i) = bEit 1X
T=t

(��)T�t
�
1� ��
1 + !�

�
!bYT � b�T + vy�

vy
�T

�
+ �� (b�T+1 � 
b�T )� (A.11)

where bp�t � log (p�t =Pt) and ! � vyyY =vy is the elasticity of the marginal disutility of producing

output with respect to an increase in output.

Integrating over i

bp�t = bEt 1X
T=t

(��)T�t
�
1� ��
1 + !�

�
!bYT � b�T + vy�

vy
�T

�
+ �� (b�T+1 � 
b�T )� (A.12)

which from a log-linear approximation of the aggregate price index (2:11) permits to derive

e�t = �p

�
!xt + [(1� ��)�]�1 ext�+ bEt 1X

T=t

(��)T�t (A.13)

h
���p

�
!xT+1 + [(1� ��)�]�1 exT+1�+ (1� �)�e�T+1 + uT i

where

e�t � b�t � 
b�t�1 (A.14)

ext � (xt � �xt�1)� �� bE (xt+1 � �xt)
�p =

(1� �) (1� ��)
� (1 + !�)

(A.15)

Equivalently, expression (A:13) can be re-expressed (see Woodford (2003)) as

e�t = �xt + bEt 1X
T=t

(��)T�t [���xT+1 + (1� �)�e�T+1 + uT ] (21bis)

where � � �p�

(1���)�� > 0, xt = (xt � �xt�1) � �� bEt (xt+1 � �xt), 0 � � � � and � is the smaller

root of the quadratic equation �'(1 + ��2) =
�
! + '(1 + ��2)

�
�. Notice that current in�ation

therefore depends on lagged in�ation, current, lagged and one-period ahead output gaps, and on

the long-horizon forecasts of future output gaps, in�ation rates and supply shocks.
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Appendix B. Econometric Procedure

B.1. Kalman Filter. To generate draws from the posterior distribution of � using the Metropolis

algorithm, I need to evaluate the likelihood function p
�
Y T j �

�
at each iteration. Having expressed

the model as a linear Gaussian system, I can easily compute the likelihood recursively with the

Kalman Filter.

I run the Kalman �lter recursion with standard steps to compute �rst and second moments of

the following conditional distributions:

(1) Start from initial values:

p
�
�t j Y t; �

�
(B.1)

(2) Prediction:

p
�
�t+1 j Y t; �

�
=

Z
p
�
�t+1 j �t; �

�
p
�
�t j Y t; �

�
d�t (B.2)

p
�
Yt+1 j Y t; �

�
=

Z
p
�
Yt+1 j �t+1; Y t; �

�
p
�
�t+1 j Y t; �

�
d�t+1 (B.3)

(3) Updating:

p
�
�t+1 j Y t+1; �

�
=
p
�
Yt+1 j �t+1; Y t; �

�
p
�
�t+1 j Y t; �

�
p (Yt+1 j Y t; �)

(B.4)

(4) Evaluate likelihood function:

p
�
Y T j �

�
=

TY
t=1

p
�
Yt j Y t�1; �

�
B.2. Metropolis-Hastings Algorithm. To generate draws from the posterior distribution p

�
� j Y T

�
,

I use the Metropolis algorithm. The procedure works as follows.

1. Start from an arbitrary value for the parameter vector �0. Set j = 1.

2. Evaluate p
�
Y T j �0

�
p (�0)

3. Generate ��j = �j�1+", where ��j is the proposal draw and " � N(0; c�"). c is a scale factor

that is usually adjusted to keep the acceptance ratio of the MH algorithm at an optimal

rate (25%-40%, see Geweke (1999)).

4. Generate u from Uniform[0; 1]

5. Set

8><>: �j = ��j if u � �
�
�j�1; �

�
j

�
= min

�
p(Y T j��j )p(��j )

p(Y T j�j�1)p(�j�1) ; 1

�
�j = �j�1 if u > �

�
�j�1; �

�
j

�
6. Repeat for j + 1 from 2: until j = D (D = total number of draws).
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B.3. Convergence. To assess convergence of the MCMC (Markov Chain Monte Carlo) simulation,

I performed various checks. First, simple initial checks consist of starting the chain from di¤erent

initial conditions and comparing the results, or looking at the trace plots of the draws. Then,

more formally, I have implemented a number of convergence tests as the ones proposed by Geweke

(1992), and Raftery and Lewis (1995).53 Geweke�s test consists of comparing the partial meansb�1 = 1
D1

PD1
j=1 g (�j) and b�2 = 1

D2

PD2
j=D1+1

g (�j), obtained from the �rstD1 and lastD2 simulation

draws. I can test the null hypothesis of equal means between the two samples of draws, knowing

that for D ! 1, the quantity (b�1 � b�2) =� bS1g(0)
D1

+
bS2g(0)
D2

�1=2
=) N(0; 1). I also look at the plots

derived from a test proposed by Yu and Mykland (1994), based on the partial sums of the draws.54

B.4. Model Comparison. I follow Geweke (1999)�s modi�ed harmonic mean approximation to

compute the marginal likelihood. Here I brie�y describe the procedure. Let b�D = 1
D

PD
d=1 �d andb�D = 1

D

PD
d=1

�
�d � b����d � b��0 be the estimates of E(� j Y;Mi) and var(� j Y;Mi) obtained

from the output of the posterior simulator. Then, for a given p 2 (0; 1), de�ne the support of f(�):

b�D = �� : ��d � b�� b��1D �
�d � b��0 � �21�p (k)

�
(B.5)

where �21�p (k) is the (1 � p)th percentile of the Chi-squared distribution with degrees of freedom

equal to the number of parameters k. Geweke (1999) recommends using the following Multivariate

Normal density truncated to the region b�D as f(�):
f(�) =

1

p (2�)k=2

���b�D����1=2 exp ��1
2

�
�d � b�� b��1D �

�d � b��0� 1�� 2 b�D� (B.6)

where 1 (�) is an indicator function.

53Raftery and Lewis (1995)�s diagnostics suggests a minimum number of draws by computing the draws�

autocorrelation.
54They propose the statistics CSt =

�
1
t

Pt
d=1 �

d � ��
�
=��, where �� and �� are the empirical mean and standard

deviations of the D draws of the Markov Chain. The plot of CSt converges to 0 as we increase t.
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Description Parameters Range Prior Distr. Prior Mean Prior Std. 95% Prior Prob. Int.

Habit Formation � [0; 1] Uniform :5 :289 [0:025; 0:975]

Discount rate � [0; 1] Beta :99 :01 [0:973; 0:999]

IES � R+ Gamma :125 :09 [0:015; 0:35]

In�. Indexation 
 [0; 1] Uniform :5 :289 [0:025; 0:975]

Function price stick. �p R Gamma :015 :011 [0:0019; 0:04]

Elast. mc to inc. ! R Normal :8975 :4 [0:114; 1:68]

Int-rate smooth. � [0; 0:97] Uniform :485 :28 [0:024; 0:946]

Feedback In�. �� R Normal 1:5 :25 [1:01; 1:99]

Feedback Gap �x R Normal :5 :25 [0:01; 0:99]

Autoregr. Dem shock �r [0; 0:97] Uniform :485 :28 [0:024; 0:946]

Autoregr. Sup shock �u [0; 0:97] Uniform :485 :28 [0:024; 0:946]

MP shock �" R+ InvGamma 1 :5 [0:34; 2:81]

Demand shock �r R+ InvGamma 1 :5 [0:34; 2:81]

Supply shock �u R+ InvGamma 1 :5 [0:34; 2:81]

Gain Coe¤. g R+ Gamma :031 :022 [0:0038; 0:087]

Table 1 - Prior distributions for model with learning.

Notes: The same priors are used for the model with rational expectations, excluding the prior for the gain

coe¢ cient g, not needed.
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Description Parameters Posterior Mean 95% Post. Prob. Interval

Habits � 0:117 [0:006; 0:289]

Discount � 0:99 [0:974; 0:998]

IES � 0:748 [0:587; 0:996]

Indexation 
 0:032 [0; 0:11]

Fcn. price stick. �p 0:016 [0:002; 0:04]

Elast. mc ! 0:865 [0:03; 1:61]

Int-rate smooth. � 0:914 [0:875; 0:947]

Feedback In�. �� 1:484 [1:08; 1:90]

Feedback Gap �x 0:801 [0:433; 1:18]

Autoregr. Dem shock �r 0:845 [0:776; 0:908]

Autoregr. Sup shock �u 0:854 [0:778; 0:93]

MP shock �" 0:86 [0:777; 0:953]

Demand shock �r 1:67 [1:47; 1:91]

Supply shock �u 1:15 [1:02; 1:31]

Gain Coe¤. g 0:0183 [0:0133; 0:0231]

Table 2 - Posterior estimates: model with learning.
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Description Parameters Giannoni-Woodford �03 Bayesian Estimation

Estimate Mean Estimate 95% Post. Prob. Int.

Habits � 1 0:911 [0:717; 0:998]

Discount � 0:99 (�xed) 0:9897 [0:971; 0:999]

IES ' 0:6643 3:813 [2:285; 6:02]

Indexation 
 1 0:885 [0:812; 0:957]

Fcn. price stick. �p 0:0015 0:001 [0:0001; 0:002]

Elast. mc ! 0:8975 0:837 [0:01; 1:63]

Int-rate smooth. � � 0:89 [0:849; 0:93]

Feedback In�. �� � 1:433 [1:06; 1:81]

Feedback Gap �x � 0:792 [0:425; 1:165]

Autoregr. Dem shock �r � 0:87 [0:8; 0:93]

Autoregr. Sup shock �u � 0:02 [0:0005; 0:07]

MP shock �" � 0:933 [0:84; 1:04]

Demand shock �r � 1:067 [0:89; 1:22]

Supply shock �u � 1:146 [1:027; 1:27]

Table 3 - Rational Expectations Estimates and 95% posterior probability interval.

Note: 0:0187% of the draws fell in the indeterminacy region and were discarded.
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Learning Rational Expectations

Log Marginal Likelihood �759: 08
(1:326)

�765: 45
(1:316)

Posterior odds 584:06 1

Posterior probabilities 0:99829 0:0017092

Table 4 - Model Comparison: Learning (with frictions) vs. Rational Expectations (with frictions).

Learning Rational Expectations

Log Marginal Likelihood �750: 65
(1:375)

�765: 45
(1:316)

Posterior odds 2:6764 � 106 1

Posterior probabilities 1 3:7363 � 10�7

Table 5 - Model Comparison: Learning (no frictions) vs. Rational Expectations (with frictions).

Note: log marginal likelihoods are computed using Geweke�s Modi�ed Harmonic Mean approxi-

mation.
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Parameters Mean estimate 95% Post. Prob. Interval

� 0:171 [0:04; 0:32]

� 0:989 [0:97; 0:999]

� 0:138 [0:02; 0:36]

� 0:051 [0:02; 0:10]


 0:204 [0; 0:78]

�p 0:0015 �

! 0:8975 �

� 0:894 [0:85; 0:93]

�� 1:508 [1:14; 1:84]

�x 0:797 [0:41; 1:25]

�r 0:902 [0:82; 0:96]

�u 0:017 [0; 0:06]

�" 0:934 [0:84; 1:04]

�r 0:822 [0:74; 0:91]

�u 1:382 [1:12; 2:04]

g 0:0283 [0:009; 0:048]

Table 6 - In�nite-Horizon Learning: posterior estimates and 95% posterior probability intervals.
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Time-Varying In�ation Target Post-1982 Sample Di¤. prior for g Di¤erent gains Est. Initial Beliefs

Param. Mean Est. 95% P.I. Mean 95% P.I. Mean 95% P.I. Mean 95% P.I. Mean 95% P.I.

� 0:146 [0:01; 0:36] 0:13 [0:01; 0:29] 0:126 [0:006; 0:31] 0:106 [0; 0:25] 0:178 [0:01; 0:41]

� 0:991 [0:97; 0:99] 0:99 [0:97; 0:999] 0:99 [0:97; 0:999] 0:991 [0:98; 0:999] 0:988 [0:97; 0:999]

� 0:44 [0:18; 0:73] 1:15 [0:87; 1:58] 0:764 [0:58; 1:03] 0:767 [0:60; 0:98] 0:438 [0:30; 0:71]


 0:035 [0; 0:14] 0:11 [0; 0:42] 0:032 [0; 0:11] 0:03 [0; 0:1] 0:024 [0; 0:08]

�p 0:0015 � 0:0015 � 0:0015 � 0:0015 � 0:0015 �

! 0:8975 � 0:82 [0; 1:5] 0:892 [0:08; 1:63] 0:8975 � 0:8975 �

� 0:917 [0:87; 0:96] 0:92 [0:88; 0:96] 0:914 [0:88; 0:95] 0:913 [0:88; 0:94] 0:87 [0:82; 0:91]

�� 1:47 [1:09; 1:78] 1:60 [1:11; 2:05] 1:486 [1:09; 1:91] 1:46 [1:05; 1:87] 1:43 [1:1; 1:78]

�x 0:65 [0:4; 1] 0:50 [0:13; 0:89] 0:784 [0:38; 1:18] 0:786 [0:43; 1:15] 0:625 [0:22; 1:03]

�r 0:838 [0:74; 0:93] 0:92 [0:87; 0:96] 0:84 [0:77; 0:91] 0:84 [0:78; 0:90] 0:539 [0:38; 0:66]

�u 0:831 [0:77; 0:90] 0:55 [0:28; 0:74] 0:85 [0:78; 0:93] 0:85 [0:78; 0:93] 0:83 [0:73; 0:91]

��� 0:91 [0:82; 0:98] � � � � � � � �

g 0:0353 [0:022; 0:047] 0:0058 [0:0005; 0:018] 0:01835 [0:013; 0:023] � � 0:035 [0:013; 0:045]

gx � � � � � � 0:0161 [0:009; 0:023] � �

g� � � � � � � 0:0247 [0:004; 0:04] � �

Table 7 - Posterior estimates and 95% posterior probability intervals (EE Learning).

Note: the parameters that are not estimated are �xed at the values in Giannoni and Woodford (2003).
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Welfare Loss (learning is �true�model)

Optimal Policy assuming Learning 4:306

Optimal Policy assuming RE 7:150

Table 8 - Welfare losses implied by optimal monetary policies assuming learning and rational

expectations when learning is true model.
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Figure 1 - Evolution of agents�beliefs (1960:I-2004:II).
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Figure 2 - Actual (solid) and expected (dashed) in�ation over the sample.
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Figure 3 - Federal Funds rate (solid) and time-varying in�ation target (dashed).
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Figure 4 - Evolution of agents�beliefs with estimated initial conditions (1960:I-2004:II).
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